

MTP : New memory test solution enabled by software for true
per-pin test processor architecture system

Takashi Itoh

Verigy
Takashi.itoh@verigy.com

Abstract

Memory is important part of SOC/SiP. Today’s Devices have a variety of capabilities for
controlling, communication, entertainment, etc., and memory supports those capabilities as
temporaly workspace, program code storage, cache.
This paper describes how to test memory by ATE without dedicated hardware for memory
test.

1. Introduction

Testing memory device is different from normal logic device testing. The minimum units,
called memory cells, are arrayed in a matrix, and each memory cell has its own unique
address. To access the target memory cell, an address should be specified with data.

All of the memory cells have to be tested during a test pattern, thus the basic steps of
memory test are

• Write data to all cells
• Read data from all cells and compare read data with data in write sequence

At this time, ATE needs to specify the address in order and the pattern for the address pins
is changed regularly with some rule. In the most simplest case, the address is incremented
or decremented by 1. And changes are repeated from 0 to the maximum address (or vise-
versa). It is not a simple repeat, thus repeat command can not be used for this kind of
pattern. This kind of vector can be described by usual flat logic vector like Figure.1-1.

Takashi Itoh
MTP : New memory test solution enabled by software for true per-pin architecture system

But this is not an efficient way. For example, it’s not easy to modify such a pattern.
Additionally, if the size of a memory device becomes big, the vector can not be downloaded,
or required number of patterns can not be stored into vector memory of ATE.

If it was possible to describe pattern by rule like Figure.1-2, the long iteration of pattern
can be described in simple way, which solves the above problems.

ATE should provide way to generate pattern by rule for memory testing. This capability of
pattern generation is so called Algorithmic Pattern Generator. Algorithm means rules how to
generate address and data and commands by rule.

In this paper, “APG” is used for Algorithmic Pattern Generator as abbreviation.

2. Traditional way for generating memory pattern

Usually an APG is provided as special hardware module. Normal logic test modules do not
have the capability to generate algorithmic patterns. Logic pattern is also controlled by
sequencing instructions to do repeat or loop, but they are applied to all of the pins, not for
modifying some of the pins. (Figure. 2)

Figure 1. Pattern in flat and rule style.

Takashi Itoh
MTP : New memory test solution enabled by software for true per-pin architecture system

Such a special hardware module (hardware APG) has an ALU (Arithmetic Logic Unit), and

can handle calculation for address, and generates patterns according to an algorithm.
A dedicated language is used for describing the algorithm. The source code of the

algorithm in a dedicated language is downloaded to the hardware APG, and this source code
is recognized in real time to generate the pattern for memory testing.

The language should be recognized hardware directly, so mnemonic like language is used
in some case.

Figure 2. Normal sequencer instruction is not
suitable for generating memory test pattern.

Figure 3. Traditional hardware APG.

3. Software APG by TPPP architecture

In case of Test Processor Per-Pin (TPPP) architecture, a significant difference from
traditional ATE is to have test processor in every pin, and each test processor has its own
sequencer, and it can work independently. At the result, a TPPP ATE system can enable
memory test capability without any additional hardware.

3.1. Overview of software APG

In case of TPPP architecture with software APG, test pattern generation is separated from
execution. Finally, each test processor recognizes and executes its own bunch of simple
sequencer commands. Before that, conversion from source code (algorithm) to vector
binary is done in workstation as “compile”. Any type of language can be used for describing
algorithm, because the processing of the compilation is done by the workstation, and the
ATE hardware does not need to consider the language type. This kind of flexibility is one

Takashi Itoh
MTP : New memory test solution enabled by software for true per-pin architecture system

benefit of software APG. In case of the V93000 system, a C-like language is used for
describing algorithms.

Figure 4. is an overview of how to generate per-pin sequencer vectors for each pin from

algorithms.

3.2. The Principle of compression

The Benefits using rules to describe patterns – as done by APGs - are …
• Long and complicate pattern can be described in short code
• Big pattern can be stored in small vector memory
• Easy to maintain

If the compilation by software APG generated a flat pattern for each test processer, it
would be meaningless to use a software APG. The principle of how to convert from human-
readable algorithm to machine-readable per-pin sequencer commands is discussed in this
chapter.

Figure 5. is a simple example of this principle. The fundamental operation of the

algorithm is a repeat with address increment or decrement. In this case, the address is

Figure 4. Overview of software APG for Test Processor Per-Pin architecture.

Takashi Itoh
MTP : New memory test solution enabled by software for true per-pin architecture system

in ted from 0x0 to 0xf in hexadecimal. The calculated address value is recognized as
bin ry value, and finally the 0/1 values become drive high/low, or compare H/L. Each bit
from LSB to MSB is assigned to the address pins a3, a2, a1, a0 and generates signals.

he rule in this case is very simple, but it’s not possible to describe by normal sequencer
struction, because it’s not possible for each pin to operate in a different way in traditional

s own different sequencer commands and the
ign with the other pins. In

th
A sequencer

In Figure 5., on the right hand side, you can find simple rules that generate the pattern

for each pin for a +1 increment across the address pins a0 to a3. For example, LSB (a0)
repeats “01” only during loop of address increment. a2 repeats “0011” only. These rules are
not changed even if the end of the loop became bigger or smaller.

cremen
a

T
in
ATE. But in case of TPPP, each pin can have it
oundary of repetition of repeat command is not needed to alb

o er words, perfectly independent sequencer commands can be executed at the same time.
softwar dable e APG uses this advantage to describe vector in machine-rea

commands and to compress size of vector.

Figure 5. Principal of pattern compression. In this example, address is incremented by 1
from 0x0 to 0xF in hexadecimal.
Algorithm that is described in C-like language is compiled into Per-Pin sequencer
subroutine. Source code described in cycle-aligned manner is finally converted to
independent per-pin base commands by “compile”.

Takashi Itoh
MTP : New memory test solution enabled by software for true per-pin architecture system

This way a very long algorithm iteration can be described in simple machine-readable
sequencer commands and size of vector is compressed significantly. This is a very simple, a
similar process will be applied for more complicate algorithm regarding the loop structure of
the source code.

Patterns handled by APG must have rules to describe pattern in algorithms, thus these
nd of conversion and compression can be done for every memory pattern.

4. MTP – the solution for memory test

MTP (Memory Test software Plus) is the new memory test solution software for the
V93000 system. MTP uses a software APG for TPPP architecture as discussed in chapter 3.
Additionally, a variety of flexibilities are added.

Testing memory for SOC/SiP device requires several perspective of flexibility. MTP and
V93000 SOC system provides them through a combination of software APG and TPPP.

4.1. Setup flexibility by software APG

These flexibilities are benefits of a software APG that generates vector binary by
compiling source code.

• Modular structured setup file for device oriented setup
 Setup files are separated into architecture of memory, access cycles, algorithm,

pin mapping, etc. Thus, reuse and sharing of complete or partial setup data can
be done easily.

ki

• No interface dependency
 All of memory interfaces like DRAM, SRAM, FLASH, serial, parallel, protocol base

ned by

nd independent calculation
 No limitation for number of variable
 User can describe operation and calculation in separate lines for complicated

ware handles
an mix flat vector (example: for
mory) and memory test pattern easily.

interface (like XDR) can be supported by MTP.
• Friendly C-like language for describing algorithm

 C-like syntax and operators are easy to understand for users.
 Name of access cycle for describing read and write sequences can be defi

user like C’s function.
• Unlimited number of independent variables a

address calculation.
• Variety of operators

 Calculation is recognized and processed by the compiler in the workstation, so a
variety of operators can be handled.

 Example : +, -, *, /, <<, >>, bitwise xor, bitwise and, bitwise or, bitwise not
• Isolation from hardware timing setup (x-mode)

 Consistency between algorithm and hardware timing setup is handled by the
compiler, so if you might need to change x-mode, you do not need to modify
your algorithm, just to do re-compile.

• On-the-fly switching of memory and logic vector
 Memory test vector is generated as subroutine, and the same hard

both flat logic and memory vector. User c
initializing device to access embedded me

Figure 6. is example of algorithm description by MTP.

Takashi Itoh
MTP : New memory test solution enabled by software for true per-pin architecture system

 pseudo algorithm, not for actual

us
“s
ite
Ca ulation for “skip” is in independent line, but this is recognized by compiler in
workstation and no additional cycle is generated for actual pattern execution.
“is{}” specifies point to place refresh subroutine by hardware, when period to interruption
has come.
Both “read(row, col, data)” and “write(row, col, data)” are subroutines. User can define
almost same as C-language.

“refresh ()” is special subroutine for refresh. This is used only when refresh interruption
should occur. Insertion of refresh subroutine is done by hardware during pattern execution
in real time automatically.

Figure 6. Example of algorithm description by MTP. This is
test.
In reading sequence, some special operations are added for explanation. Variable “skip” is

ed for additional reading like walking algorithm. This value is shifted to left. This means
, “skip” is incremented in each kip” becomes 1, 2, 4, 8, instead of 1, 2, 3, 4. Additionally

ation. Thus, “skip” becomes 1, 3, 7, 15 finally. r
lc

Takashi Itoh
MTP : New memory test solution enabled by software for true per-pin architecture system

4.2. Flexibility of the Test Processor Per-Pin architecture

 Processor Per-Pin architecture can enable another type of
Flexible pin assignment

 Each has test processor, thus each pin can have APG.
 No routing, no relays
 No limitation for multi site configuration
Wide 64 bit address for each x, y, z

 No dedicated hardware enable less/no limitation
Signal integrity

 No MUX, no routing relays
High speed APG

 The same test processor is used for both
processor handles simplified sequencer co
pin. This means that complicated memory patterns can be
speed logic ATE speed, which is tough handle for tr
APGs.

4.3. Other flexibilities

 provides following capabilities to support all types of memory
Bitmap viewer
Redundancy Repair Analysis
Hardware Refresh (gapless insertion)
Counted Match Loop
Pattern Synchronous DC events

Test flexibilities.

•

• address and unlimited data bus width

•

•
 logic and memory test, and each test
mmands, which are optimized for each

generated in high
aditional hardware based

MTP test.

•
•
•
•
•

 de Goor, TESTING SEMICONDUCTOR MEMORIES, A. J. van de Goor, Gouda,

[2

5. Conclusion

The combination of TPPP and software APG provides the required flexibility of memory test
for SOC/SiP. This methodology is effective for complex SOC/SiP application situations and
provides benefits for customers who need to test memories.

6. References

[1] A. J. van
The Netherlands, 1998.

] Verigy, MTP on SOC 2.66.0 documentation, September 16, 2009

Takashi Itoh
MTP : New memory test solution enabled by software for true per-pin architecture system

