

New Features in V93000 EDGE Demodulation
Joe Kelly and Max Seminario, Verigy

Abstract

This work presents an overview of some of the new features pertaining to EDGE found in

the V93000 Demodulation Library. These can improve test times and TTM (Time To

Market) by allowing users to select demodulation results for either a specific, or multiple

EDGE frames (sometimes, loosely referred to as bursts). Code examples are also

provided. It is assumed that the reader is somewhat familiar with the basics of coding

demodulation procedures in the V93000 programming environment and as such, details

on the structure of that implementation are not provided. For more general demodulation

implementation details on the V93000 it is suggested to view the V93000 documentation.

Demodulation on the V93000

The demodulation library within the V93000 supports all of the modulation formats

found in consumer wireless devices and is essential to finding TX (transmit) and RX

(receive) EVM values. Many consider demodulation algorithms to be complex.

However, the process can be broken down into a few key high-level pieces to make it

better understood.

A flow chart of the algorithm is shown in Figure 1. To use the demodulation library, first

an array, either from a digitized capture or from a file, is acquired. This sampled I/Q

array of information is applied to the algorithm. Each waveform has its own properties

such as sample rate, modulation type, encoded data, etc. and from them the appropriate

EVM can be calculated. The user selects the demodulation type and required input

parameters and from there, the EVM or other needed values are calculated.

Figure 1 Flow chart of the algorithm used for the demodulation library on the V93000 [1].

The following outline of the key steps within the algorithm reference Figure 1 and how it

handles an array of data (on the V93000, data is passed into the algorithm as an array of

doubles, either ARRAY_D or ARRAY_COMPLEX). This is usually a capture of the

signal coming from the DUT (Device Under Test) by the digitizer (DGT), but it can be

achieved by reading digital bits as well and converting to equivalent analog levels.

Alternatively, it can be a mathematically generated waveform or saved capture from a

separate piece of hardware/ATE. Supported file formats are ASCII, Agilent Signal

Studio encrypted, and Agilent 89600 recordings. The steps of the algorithm are:

 Resample - Data is internally resampled to a sampling rate where corrections can

be made accurately and test times are minimized. The value is a function of each

standard’s symbol rate or chip rate for the code domain multiple access standard

types.

 Pulse Detection - Many standards, to save test time, will detect whether a pulse is

present or not prior to synchronization. Synchronization is a time consuming

process when searching for the sync (synchronization) word and it is a lot less

time intensive to first search if there is a valid pulse to begin with. With pulse

detection a threshold level is set. This level defines what an on/off pulse is. To

detect the burst there has to be an OFF/ON/OFF period. If a signal contains no

OFF period pulse it is suggested to have the pulse detection set to off and only

search for a synchronization word.

 Synchronization - Synchronization words have a known bit sequence that is

defined by the standard. Synchronization words are made to be robust to avoid

symbol errors and many standards will have this synchronization word be at the

constellation where the least symbol errors will occur. An internally generated

synchronization word is created and the signal is searched until a match with the

synchronization word is found (or a best-fit correlation occurs). Once the sync

word and the digitized signal are aligned and we know exactly how many samples

in this peak happens at, we can overlay both signals and we will know exactly

Measurement
Calculations

(EVM, Phase Error, etc.)

Resample Time

Correction

Time

Gating

Window FFT

Analog

Demodulation

Average

ATE

Digitizer
DUT

Array

Synchron-
ization

Pulse

Detection

where we are in the received signal. The most commonly used input parameter in

the demodulation library that is associated with controlling synchronization is

syncMode.

 Time Correction – Corrections are applied. For example, once synchronization

occurs the demodulator knows exactly how off the received signal is in phase,

magnitude, equalization, etc. (phase due to transmission line length and local

oscillator phase, magnitude due to gains or losses in the path and timing due to

the start time of sampler and transmission line length).

 Analog Demodulation (Optional) – This provides AM, FM, and PM analog

demodulation for analysis of either intentional or unintentional modulation

contained within a signal.

 Time Gating – Time Gating is implemented when the user is interested in a

specific part of the received signal or packet. For example, time gating would be

if the signal received is composed of several different types of waveforms (maybe

first half is a 1KHz sine wave and second half is a 2KHz sine wave). If the user

wants to analyze the first half of this combined waveform only they would use

time gating to ensure that only the 1KHz part of the received waveform is

analyzed. For waveforms that are standard compliant, this is used to look at

certain parts of the received packet (automatically done in standard compliant

waveforms for measuring EVM).

 Window - Windowing is performed prior to obtaining an FFT (Fast Fourier

Transform) on a signal. The true frequency domain response of a certain signal is

obtained if the signal is infinitely long. Any truncation of this signal in time will

convolve the frequency response of a rectangular window that is multiplying the

signal. This truncation is calculated by the RBW (resolution bandwidth) set in the

frequency domain measurement. A rectangular window (or no windowing) has a

lot of power in its sidelobes so windowing with a different shape helps obtain the

best frequency response representation of the true signal. The number of samples

used for the FFT for a certain RBW depends on the ENB (Equivalent Noise

Bandwidth) of the specific window being used. This is, RBW = ENB*Fs/N,

where Fs is the sampling frequency, N is the number of samples and ENB is the

Equivalent Noise Bandwidth.

 FFT – Fast Fourier Transform. This is implemented to look at the energy content

of a signal in the frequency domain. For demodulation FFTs are performed to

equalize the signal or to extract the received symbols (such as in an OFDM type

of signal).

 Average – Averaging is a way to compute the mean of a measurement (mean =

x(n)/N). Averaging of FFTs is a great way to lower white noise since white

noise has a phase that is randomly uniformly distributed. Due to this property, if

enough averages are implemented, the white noise will sum up to a very small

amount of power due to the random nature of the phase.

 Measurement Calculations – – Mathematical derivations on a signal in order to

extract certain signal properties (or parameters). This could be something as

simple as signal power or as complex as EVM.

EDGE Demodulation

As with the Agilent 89600 Vector Signal Analyzer (VSA) software, the V93000 offers

two primary formats/classes for EDGE demodulation. They are:

 EDGE_FLEX – Demodulates 2G 8PSK EDGE signals

 GSM_EDGE_EVO – Demodulates 2G 8PSK EDGE signals as well as EDGE

Evolution signals

A new feature in both of these classes is the ability to perform multi-frame demodulation.

From a production test standpoint, this saves both, hardware memory as well as test time.

Capture memory in the hardware is saved because with one-frame-at-a-time

demodulation, leading samples are required to ensure that the frame start point is found.

Test time is saved because synchronization only has to be performed for the first of any

number of frames, compared to multiple single frame analyses where each frame would

have to be synchronized by the algorithm.

Both of these classes have their time and place. Just as in the Agilent 89600 VSA,

EDGE_FLEX is based on a generic digital demodulation algorithm and as such, provides

a great amount of flexibility. GSM_EDGE_EVO was designed around and built upon

solely the GSM and EDGE standards and also incorporates the ability to demodulate the

newer EDGE Evolution higher data rate standard.

Multi-Frame Demodulation with EDGE_FLEX

As always, EDGE_FLEX can simply demodulate a single frame and provide a myriad of

results including EVM, frequency error, phase error, and even the demodulated bit

sequences. If it is desired to demodulate more than one frame, this is performed in

EDGE_FLEX by loading the waveform to be analyzed and then looping the

demodulation through the waveform. Upon each iteration of the loop sequence, a new

starting point of analysis is defined. This is shown in the code below where 20 frames

are demodulated in a loop. With each analysis, the endpoint (burstEndIndex) becomes the

starting point of the subsequent frame’s analysis. With each iteration of the loop, the

EVM is obtained (symbolRmsEVM) and its value logged and tested or stored to provide a

user-calculated average and worst-case EVM over all of the frames.

double evmRms = -999.9; // Initialize to a ridiculous value

double sampleRate; // User must provide a value for this

ARRAY_COMPLEX iqData; // User must populate this array

int burstEndIndex = 0; // Defines start point for subsequent burst searches

static DEMODULATION demod("EDGE_FLEX");

for (i=1; i<=20; i++)

{

 demod.setInputParameter("inputDataOffset", burstEndIndex);

 if (i==1) demod.execute(iqData, sampleRate);

 else demod.execute(); // Skips synchronization to save test time

 demod.getResult("symbolRmsEVM", evmRms);

 demod.getResult("burstEndIndex", burstEndIndex);

 cerr << "EVM (rms, %), Frame " << i << ": " << evmRms << endl;

}

Multi-Frame Demodulation with GSM_EDGE_EVO

When demodulating multi-frames with GSM_EDGE_EVO, the algorithm is more

integrated compared to that of EDGE_FLEX. No user-level looping through the frames

is required. The following code shows this. Rather, the user provides the waveform

array, length of a frame (frameTime), and number of frames to be analyzed

(numberOfFrames).

After the execution, results such as EVM, frequency error, phase error, and many others

are available. Referring to the code below, these are available typically in three formats,

average of all frames analyzed (e.g., symbolRmsEVM), worst-case over all frames

analyzed (e.g., symbolRmsEVMWC), and as a vector of length numberOfFrames

containing the value for each frame analyzed (e.g., symbolRmsEVMV). An example of

how to access/print the vector results is provided in the code.

double evmRms = -999.9; // Initialize to a ridiculous value

double sampleRate; // User must provide a value for this

ARRAY_COMPLEX iqData; // User must populate this array

static DEMODULATION demod("GSM_EDGE_EVO");

demod.setInputParameter("modulationSchemeAutoSelect", FALSE);

demod.setInputParameter("modulationSchemeManual", 1); // 1=8PSK

demod.setInputParameter("frameTime", 0.001329); // Frame length in seconds

demod.setInputParameter("numberOfFrames", 20);

demod.execute(iqData, sampleRate);

demod.getResult("symbolRmsEVM", evmRms); // EVM (rms, %) over all frames

demod.getResult("symbolRmsEVMWC", evmRmsWC); // EVM (rms, %, worst-case)

demod.getResult("symbolRmsEVMV", evmPerFrame); // EVM (rms, %) per frame

cerr << "EVM (rms, %), averaged over 20 frames: " << evmRms << endl;

cerr << "EVM (rms, %), Worst case: " << evmRmsWC << endl;

//Print out per-frame results

for (i=0; i<20; i++)

{

 cerr << "EVM (rms, %), Frame " << i+1 << ": " << evmPerFrame[i] << endl;

}

Graphing Results within the Demodulation Library

The demodulation library has graphs available for each demodulation class. These can be

used for debugging as well as within the Signal Analyzer Tool. The generateGraph()

function can be used with any of the many available graphs listed in Table 1. Using an

IQ constellation plot as an example, a graph can be displayed in the Signal Analyzer Tool

via the following code.

double sampleRate; // User must provide a value for this

ARRAY_COMPLEX iqData; // User must populate this array

DEMODULATION demod("GSM_EDGE_EVO);

demod.execute(iqData, sampleRate);

demod.generateGraph(“TestSuite”, 1, 1, “PinName”, “Label”, TM::CONSTELLATION);

More details on the generateGraph() function can be found in the V93000 documentation.

The GSM_EDGE_EVO class has additional available graphs for some of the other

functionality such as Output RF Spectrum (ORFS) analysis. Those are outside the scope

of this article, but will be covered in an upcoming article.

Parameter Description

COMPOSITE Displays the composite EVM results, this often has a very
irregular shape to the plot

CONSTELLATION Displays the I/Q constellation

EVM_VS_SYMBOL Displays the rms EVM value on a per-symbol basis

POWER_VS_TIME Displays the uncalibrated power as a function of time, useful for
observing the shape of the waveform in the time domain, also
displays an overlay and values showing the beginning and end of
the analysis region

SPECTRUM Displays the uncalibrated power as a function of frequency

Table 1 Available graphs in EDGE_FLEX and GSM_EDGE_EVO classes.

Summary

A description of the algorithms used within the V93000 Demodulation Library is

presented. A few key use models when using the demodulation classes EDGE_FLEX

and GSM_EDGE_EVO, were shown along with the associated test method code so that

the reader has a place to begin writing their code for demodulating EDGE signals.

References

[1] Agilent Technologies, “Agilent 89600 Vector Signal Analysis Software,” Technical

Overview 5989-1679EN (2010).

