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Preface to the Series 
 
ADC and DAC are the most typical mixed signal devices. In mixed signal testing, analog 

stimulus signal is generated by an arbitrary waveform generator (AWG) which employs a D/A 
converter inside, and analog signal is measured by a digitizer or a sampler which employs an 
A/D converter inside. The stimulus signal is created with mathematical method, and the 
measured signal is processed with mathematical method, extracting various parameters. It is 
based on digital signal processing (DSP) so that our test methodologies are often called 
DSP-based testing.  

 
Test/application engineers in the mixed signal field should have thorough knowledge about 

DSP-based testing. FFT (Fast Fourier Transform) is the most powerful tool here. This corner will 
deliver a series of fundamental knowledge of DSP-based testing, especially FFT and its related 
topics. It will help test/application engineers comprehend what the DSP-based testing is and 
assorted techniques.  

 

Editor’s Note  
 
For other articles in this series, please visit the Verigy web site at 
 www.verigy.com/go/gosemi.  
 

Histogram Method in ADC Linearity Test 
Linearity is the most important specification of A/D converters (ADC). There are several 

methods available to test linearity of ADC. Histogram analysis is quite simple and easy to apply 
so that it is one of the most typical test methodologies. It may be called as a code density test. 
Ramp histogram and sine histogram tests have been used for a long time; however, linearity 
calculation equations for ramp/sine histogram are not well organized. In this document, his-
togram methods are discussed in detail, focusing on a terminal based (end-point) transfer 
function, easy-to-use equations are introduced with using cumulative distribution function for 
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sine histogram. The method using this equation is free from overload level and offset of test 
signal sine so that test procedure is simple and fast in both hardware-wise and software-wise. 

 

Transfer Function of A/D Converters 
A transfer function of n-bit linear A/D converters (ADC) is depicted in Figure 1. The horizontal 

axis shows analog input level, and the vertical axis shows discrete code. Figure 1 (a) is an ideal 
transfer function, and (b) is an actual transfer function. 

Li and Lmi (i=0, 1, 2, … , 2n-2) denote an ideal and an actual threshold levels of each code 
respectively. Qi and Qmi (i=0, 1, 2, … , 2n-1) denote an ideal and an actual quantization levels 
respectively. Quantization levels are the code centers. Then Qi and Qmi are described with 
threshold levels as below. 
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In the case of terminal based or end-point transfer function, actual terminal quantization 

levels are identical to ideal levels as shown in Figure 1 (a) (b). 
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Figure 1  n-bit Linear ADC Transfer Function 

 
The ideal quantization level points are located on the straight line. There are 2n-1 quanti-

zation levels existing from code 0 to 2n-1. Therefore the ideal step size Δ can be defined as 
below. 
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Then the terminal quantization level points Q0 and Q2

n
-1 are defined as below. 
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Therefore practically actual threshold levels Lm0 and Lm2

n
-2 are identical to the ideal threshold 

levels L0 and L2
n
-2 respectively as below.  
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Using these terminal threshold levels, the ideal code size Δ can be described as below. 
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Consequently all quantization and threshold levels can be described as below. 
 

Δ⋅+= iQQ i 0   (i=0, 1, 2, ..., 2n-1)   (11) 

Δ⋅+= iLL i 0   (i=0, 1, 2, ..., 2n-2)   (12) 

 

Linearity Definitions 
Linearity is the most important performance index of ADC. The definition is found in JEDEC 

Standard JESD 99-1 [1] and IEEE Std. 1241-2000 [2] which is based on threshold levels. The 
standard defines end-point linearity errors based on code size and threshold level errors as 
Figure 2, where code size error (dle[i]) and linearity error (ile[i]) are shown. Conventionally we 
call the code size error as differential linearity error (DLE) or differential nonlinearity (DNL), and 
the linearity error as integral linearity error (ILE) or integral nonlinearity (INL). Therefore DLE 
and ILE are used in this article. 

 

 
Figure 2  DLE and ILE  
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They are defined as below. The unit is LSB or least significant bit. 
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Ramp Histogram 
Introduction 

Ramp histogram is the simplest and the most straightforward test method of ADC linearity 
depicted in Figure 3. The stimulus signal should be a very linear ramp waveform. It must swing 
slightly larger than the ADC input range, otherwise the linearity cannot be tested correctly. It is 
very important point. Its slope must be slow enough for the ADC under test to generate multiple 
times every code. Since histogram method is a kind of statistical method, each code had better 
to occur many times, for example at least 10 counts. An image of code occurrence by a ramp is 
shown in Figure 3. Since the input ramp overloads to the input range of the DUT, code 0 and the 
full-scale code (2n-1) occur extremely many times than the rest of the codes. Here n denotes the 
number of bits. 

 

 
Figure 3  Ramp Histogram 

 
Ramp Linearity Equation 

A histogram by ramp signal looks as Figure 4. 
 

 
Figure 4  Ramp Histogram 
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The linearity is calculated as follows. Neglecting code 0 and code (2n-1) counts, all the counts 
from code 1 through (2n-2) are summed up. The average height (Hm) of the histogram from 1 
through (2n-2) is calculated as below. 
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A bin height is proportional to its code size. The average bin height Hm corresponds to the 

ideal code size so that Hm is the reference of each bin. Differential linearity error DLE[i] defined 
as Equation (13) is described using Equation (15) as below. 
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where i=1,2,3, … ,2n-2, and DLE[0]=DLE[2n-1]=0 perfunctory. 
Integral linearity error ILE[i] in Equation (14) is now modified as below. 
 

∑
=
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k
kDLEiILE

1
][][    [LSB]     (17) 

where Lm0=L0, and ILE[0]=ILE[2n-1]=0 perfunctory. 
Equation (17) shows that ILE[i] is derived as accumulation of DLE[i]. Step-by-step deriving 

procedure is described in Appendix section. Equations (16) and (17) are the linearity equations 
by using a ramp stimulus. 

 

Sine Histogram 
Introduction 

Ramp wave method is quite simple in terms of linearity calculation because ramp histogram 
appears a flat linear profile. However, actually it is not so easy to generate a good linear ramp 
waveform. A precision active integrator circuit with a low-loss and low dielectric absorption 
capacitor is required to generate a good ramp. In regular IC tests, a high precision D/A converter 
is often utilized to generate a pseudo precision ramp waveform instead of an integrator. 

 

 
Figure 5  Sine Histogram 

 
On the other hand, in sine wave histogram method, a very low distortion sine wave is re-

quired. It is relatively easy to generate such a low distortion sine wave because an appropriate 
low pass filter can easily remove distortions. However, since an ADC generates a non-flat 
histogram distribution depicted as Figure 5 for a sine wave, post processing of the sine histo-
gram for linearity calculation becomes much more complex than the case of ramp histogram. 
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Figure 6  Sine Wave 

 
Probability Density Function 

A sine wave in Figure 6 can be expressed as follows; 
 

CBftAtV ++= )2sin()( π      (18) 
 
where A, B and C are amplitude, phase and offset of the signal respectively, f is a frequency 

of the signal, and t shows time. (Phase offset B is not shown in the figure.) 
Equation (18) is modified with regard to time t as below. 
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Histogram test is a statistical method. Histogram represents a probability of instantaneous 

voltage of the sine wave. A single period of the sine wave is a reciprocal of the frequency f. 
During the period of (1/f) the signal travels from (–A+C) to (A+C). When time is t1 and t2, the 
instantaneous voltage is located at the levels of V1 and V2 respectively as shown in Figure 7.  

 

 
Figure 7  Probability between V1 and V2 

 
Considering the probability that the signal exists between voltage V1 and V2, it occurs twice 

during the period of (1/f) as shown in Figure 7. Consequently probability density P that the signal 
exists between voltages V1 and V2 can be expressed as below. 
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This probability density looks a bathtub curve as Figure 8. 
 

 
Figure 8  Probability Density 

 
ADC’s input range is FS in Figure 1. Figure 9 explains testing condition. Figure 9 (b) describes 

a probability density of the wave in (a). When analyzing linearity of an ADC, all available codes 
of ADC must be stimulated so that the test signal sine wave must be overloaded to the input 
range of the ADC. This is a very important point. So the conditions of 2A>FS, (A+C)>FS/2 and 
(-A+C)<(-FS/2) must be required. The points of +/-(FS/2) are identical to Q2

n
-1 and Q0 of the 

device. 
 

  
Figure 9  Sine Wave and Probability Density 

 
When an instantaneous level of the signal is located at less than Lm0, ADC generates code 0. 

When P[0] denotes probability density that the code 0 occurs, P[0] is the sum of areas num-
bered 1 and 2 in Figure 9 (b) so that P[0] can be derived as below. 
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When the signal exists between levels Lmi-1 and Lmi, ADC generate code i. Let P[i] denote the 

probability density that code i occurs. P[i] corresponds to the area numbered 3 in Figure 9 (b). 
P[i] can be described as below. 
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When the signal crosses over the threshold level Lm2

n
-2, ADC generates code (2n-1). The 

probability density of code (2n-1) is expressed as P[2n-1] which is the sum of areas numbered 4 
and 5 in Figure 9 (b). Then P[2n-1]  is described as below. 
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In general, for calculating linearity of ADC, the measured histogram is directly compared to 

the ideal bathtub curve of the probability density Equations (21), (22) and (23). These equations 
contain the factors of amplitude A and offset C, which must be evaluated somehow in the 
calculation procedure. After constructing a sine histogram, firstly with analyzing the unbalance 
of the minimum and the maximum code bins, the offset and the amplitude of the sine wave 
should be estimated respectively, and then the histogram is compensated in terms of the offset 
and amplitude. [3][4][5] This procedure is really complex and induces calculation errors. More 
calculation steps make an impact to test throughput. This was a disadvantage in sine histogram 
method. 

 
Cumulative Distribution Function 

Instead of directly analyzing a probability density curve, another approach is to use a cu-
mulative distribution function, which is an integral of probability density as shown in Figure 10. 

 

 
Figure 10  Cumulative Distribution from Code 0 to i 

 
Let’s integrate the bathtub curve. When PI[i] denotes the cumulative distribution that code 

from 0 to i occurs, with using Equations (21), (22) and (23), PI[i] is derived as follows. 
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By integrating the bathtub curve from code 0 to i, the cumulative distribution function looks 

as Figure 11. 
 

     
Figure 11  Cumulative Distribution Function 

 
With modifying Equation (25), a threshold level Lmi can be expressed with regard to PI[i] as 

below. 
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Linearity Equations  

By applying Equation (27) into Equations (13) and (14) with considering Equations (1) to (12), 
the differential linearity error DLE[i] and the integral linearity error ILE[i] are derived as follows. 
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        (i=0,1,2,...,2n-3) (29) 
 
where DLE[2n-2]=ILE[2n-2]=0 perfunctory. 
 

Advantage of the Equations 
Equations (28) and (29) of DLE[i] and ILE[i] consist of cumulative probability PI[i] only, and 

they do not contain any parameters of A, B or C of the sine wave applied. This is the most 
important key of the equations. This means overload level and offset of input sine wave do not 
affect linearity error calculation. Consequently when applying these equations to sine histogram 
method, all you have to do is to ensure test signals overload the input range of ADC in order to 
stimulate all valid codes of the device, and you need not care about how much it overloads nor 
how much it offsets. This makes the test procedure very simple. Since you need not precisely 
adjust the test signal level and offset, no pre-test is required. 

Equations (28) and (29) are functions of PI[i] only which can be calculated by the histogram 
straightforward. Therefore simple data processing without any compensation contributes higher 
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throughput and precision. These are the most important advantage of the equations derived in 
this article. 

 

Appendix 
Precise deriving procedure of each equation is described in this section. 
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Then Δ and Qmi can be expressed with Lmi as below. 
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Equation (28) 
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