Using “Inheriting and Overloading” concept in creating
reusable universal test method library

ZhiJun Xue, Zane Jiang
Zhi-jun.xue@verigy.com Zane.jiang@verigy.com

Introduction

Test method is a critical software component in the V93000 test program. For a
determined test condition and instrument, the test procedure, which is implemented with
test method, is highly reusable. This article introduces how to build a reusable but
customizable universal test method (UTM) library.

The basic idea is to leverage the “design pattern” concept in software engineering. A
“design pattern” is a general reusable solution to a commonly occurring problem in software
design. A “design pattern” is a description or template on how to solve a problem that can
be reused in many different situations. Carefully studying the test procedure of a mixed
signal or RF IP block, we can find that the procedure fits some “pattern” so that the “design
pattern” concept can be leveraged in creating test method.

Template method Pattern Introduction

This article will introduce one pattern to handle specific issues that happen when
developing a kind of TM code in the V93000. Sometimes test engineers want to specify the
order of operations of some kind of test, such as a general RF test, but allow variation for
their own implementations of some of the steps. A general mixed signal and RF test “design
pattern” can be described as the following diagram, and we can use the “template method
pattern” in implementing the test method.

Using “Inheriting and Overloading” concept in creating reusable universal test method library
1

‘ Manage L/B signal path

Hardware setup

Validate Input Parameters

Setup hardware and condition

MFSekterigT;zarEéL;ﬁg?Egt ‘Set DUT to required mode

Reset L/B, Hardware etc

MNecessary transformation
Evaluation the Response

Calculate required parameter
Make datalog

Highly depends on device and generally need to be
customized for different SOC device when integrating TestIP
into SOC T/P

(Figure 1: the pattern of a general mixed signal or RF test)

The Template Method pattern is a fundamental technique for code reuse.

It defines the skeleton of an algorithm in one test, deferring some steps (e.g., “manage
L/B signal path, Hardware setup” etc) to subclasses. Template Method, which is
implemented with a C++ class, lets subclasses redefine certain steps of an algorithm
without changing the algorithm'’s structure.

With C++ programming, first a class is created that provides the basic steps in the
“template method pattern”. These steps are implemented using methods. Later on,
subclasses change the methods in parent class to implement real actions. Thus the general
Task is saved in one place but the concrete steps may be changed by the subclasses. The
template method thus manages the larger picture of test semantics, and more refined
implementation details of selection and sequence of methods.

This larger picture calls abstract and non- abstract methods for the test at hand. The
non-abstract methods are completely controlled by the template method but the abstract
methods, implemented in subclasses, provide the pattern's expressive power and degree of
freedom. Some or all of the abstract methods can be specialized in a subclass, allowing the
writer of the subclass to provide particular behavior with minimal modifications to the larger
semantics.

The template method (which is non-abstract) remains unchanged in this pattern,
ensuring that the subordinate non-abstract methods and abstract methods are called in the
originally-intended sequence.

The template method pattern is very useful in TM development especially for:

1. Let subclasses implement (through method overriding) behavior that can vary
behavior to fit a dedicated DUT, loadboard and test requirement;

2. Avoid duplication in the code: localize common behavior (e.g., start sequencer, data
uploading, etc.) among subclasses and place it in a common class (in this case, a
super class). In other words, the test engineer can focus on DUT, loadboard and

Using “Inheriting and Overloading” concept in creating reusable universal test method library

waveform processing stuff, instead of those instrument relevant activities; Those
instrument relevant activities in common class (super class that is finally delivered as
a shared library) can be easily upgraded while not changing the code in subclass;

3. The best practice (e.g., SmartCalc framework, suitable use of “FLUSH” etc.) can be
placed in a common class, so that high efficient test program can be expected;

4. Control at what point(s) sub-classing is allowed. As opposed to a simple polymorphic
override, where the base method would be entirely rewritten allowing radical change
to the workflow, only the specific steps/details of the workflow are allowed to change;

In a template method, the parent class calls the operations of a subclass and not the
other way around. This is an inverted control structure that's sometimes referred to as "the
Hollywood principle,” as in, "Don't call us, we’ll call you".

There is basic C++ knowledge used in the above pattern.

Inheritance lets the developer define classes that model relationships among types,
sharing what is common and specializing only that which is inherently different. Members
defined by the base class are inherited by its derived classes. The derived class can use,
without change, those operations that do not depend on the specifics of the derived type. It
can redefine those member functions that do depend on its type, specializing the function to
take into account the peculiarities of the derived type. Finally, a derived class may define
additional members beyond those it inherits from its base class.

Virtual functions overcome the problems with the type-field solution by allowing the
programmer to declare functions in a base class that can be redefined in each derived class.
Virtual functions can be used to define different behavior dynamically during TM executing.

class Animal {
public:
wvirtual wvoid eat () const {
std::cout << "I eat like a generic Animal." << std::endl;

wirtual ~Animal ()

class Wolf : public Animal {
public:
wvoid eat () const {
std::cout << "I eat like a wolf!"™ << std::endl:;

wirtual ~Wolf()

std: :vector<Animal*> animals:
animals.push back(new Animal()):
animals.push back(new Wolf()):
for (std::vector<Animal*>::const_iterator it = animals.begin()}; it != animals.end(); ++it)
(*it)—->eat () :
delete *it:

Qutput with the virtual function Animal: reat {):

E I eat like a generic Animal.
» I eat like a wolf!

Qutput if Animal: :eat () were not declared as virtual:

Output if Animal: :eat () were not declared as virtual:

i I eat like a generic Animal.
E I eat like a generic Animal.

(Figure 2, an example of C++ inheritance, overloading and virtual function)

The introduction of self-contained, registration free “Unified Test Method” since SMT 6.1
provides a powerful tool in implementing the above concept. First of all, the new style test

Using “Inheriting and Overloading” concept in creating reusable universal test method library

method is just a C++ class and the developer can use inheritance or overloading methods
to refine any steps in the run () function but not touch the source code. The customization
can effectively handle the diversity of routing setup, analysis algorithm, datalog, etc.

The hierarchy structure of a test method library

In the following section, we introduce how to build a comprehensive test method step by
step by inheriting a father class in the library.

Figure 3 is the base class GeneralMxdTest, which is the implementation of the mixed
signal test “template method pattern” as shown in Figure 1.

'class GemeralMxdTest: peblic testesthod::TestMetdod (. .
The base class for mixed signal test to
e define the framework

fn virtual void run()
mair Zunction is celled by SmarTest oo execute a mixed signal test
ber function)

int Feuting o
ine ®
int s

protectsd

Generz1ly, when creating new test rethod cless oy dnheriting tais one, be sure

70, virtual void run()

wirtual veid initialize() f {
{ 81 doProcessParareters();

L e = 82 dosetup();
dobleasurenent();
84 dodnalysis(); The execution process is break
3| doReset(); into maximum granularity and

doDatalog(); implemented with virtual

member function, user can
return;

o I overload (customize) it

common for most mixed signal

Three basic input parameters
test are defined

(Figure 3)

C++ virtual function is defined and used in the “run()” that is actually invoked by
SmarTest to execute a test. The “execution” process is broken into maximum granularity so
that if necessary, the developer can re-define any virtual member function in the child class.

In fact, in the base class, we don’t actually define any virtual function and just provide a
framework. Developers can overload that virtual function according to their requirements in
the child class.

1. doProcessPrometers(): Validate input parameter;
2. doSetup():

a. Instrument_Setup(): setup analog module and all other modules, analog
setup can be called here or with APl to program analog module (smartest
6.5);

b. TAM_Setup(): Setup the DUT to a test mode, a general case is to invoke
protocol transaction APl to modify a pattern and then run the pattern to
setup registers;

c. LB _Routing_Setup(): call a routing setup or with APl to manage the signal
path on the loadboard.

Using “Inheriting and Overloading” concept in creating reusable universal test method library

3. doMeasurement(): Execute the test, make exceptional error processing (e.g.
timeout, no trigger etc.) and then retrieve captured response to workstation
4. doAnalysis():
a. Data_Transform(): Make necessary transformation of captured waveform
etc.
b. DSP_Calc(): Calculate required result;
5. doReset(): Reset loadboard, analog module, etc. and make them ready for next
measurement;
6. doDatalog(): Make datalog.

Figure 4 illustrates inheriting the GeneralMxdTest to create a general class for single DAC
test, the key overloading is as the virtual function “doMeasurement”, in which a general
single digitizer operation is implemented.

Always call the baseclass’s
run() to ensure the whole
process is done

86 virtual void run()
1//for testmethod framework interfaces 87 {
2#include "testmethod.hpp" 88 GeneralMxdTest::run();
3//for testmethod APT interfaces 89

ainclude "mapi.hpp” 90 return; Overload “doMeasuremnt()”
5 9Lk to make measurement with
6//inheritting from GeneralMxdTest : DGT and capture the
7#include "GenerallxdTest.cpp" vhrtual void doleasurenent)| waveform

i Using UTM project wizard to create

Jusing namespace std; | T\ class and then static INT tout_site_flag = 0,

10 T mis_trg_si o,

Inherit base class of GeneralMxdTest

num,
offline;

OM_FIRST_INVOCATTON_BEGIN():

GET_SYSTEM_FLAG(" . &offline);

14
_f,'l:lass General Single DAC_Test: public testmethod::TestMethod { if {ConnectionMode == “SINGLE™}
24class General_Single DAC_Test: public GeneralMxdTest{ __‘ll_c"‘-'“‘""“-“""’l’“'w”-"‘-'""""‘““: SSINGLED:
25protected: Routing . pin{pinDGT) , connect (TH: ;DIFFERENTTAL)
il 133 DET{pinDCT) . enablel);

Additional TM input " T DUNEP I Ly
EXECUTE, EST(1 s, &tout_site_flag.&mis_trg site);

2 Sig’ :S:rfmg EI“DGTi, i parameter handling typice e

33 std::string ConnectionMode; - faabla fnatrumer

34 int RTSPU; DAC/DGT condition DOT(pinDCT) . disable();

. Routing.pin{pinDGT) . disconnect();
o FLUSH():

36 /

37 \var diWave: (ARRAY_D) nember parameter, te store the w e s

38 # \var cpxWave: (ARRAY_COMPLEX) member parameter, to store the w . site_nus = CURRENT_SITE_NUMBER():
/ = if({(rout_site_flag> ite_num -1)}41) &% toffline)(
45 Member variable to store s i o {m (L

11.7TM: :1"1‘7&1']
41 ARRAY D dWave; waveform from DGT. The ML (min_tr

-1))81) &%

35
fline)(

42 ARRAY_COMPLEX cpxiave; variable can be operated TESTC™" , "MinaTriggers Th: 1 Fail TH: rCOMTTHUE} ;
with all classes inherited)
from this one LECRTSPUN
cpxWave=DOT(pinDCT) . getComplexWaveform{); « |
PUT_DERUG(pInDGT, "raw_waveforn:Real” . cpxWave.
(Figure 4)

Figure 5 illustrates the process of creating a test method for a specific DAC noise testing,
by inheriting the General DAC test class General_Single DAC_Test. The key overloading
here is the virtual function “Instrument Setup” and “DSP_Calc”. In the function
Insturement_Setup(), we coded the DGT setup (e.g., sample rate, etc. that is necessary to
make the DAC noise measurement); while the overloaded function “DSP_Calc” is to
implement the customer defined algorithm in calculating the noise.

Using “Inheriting and Overloading” concept in creating reusable universal test method library

Customizable Testmethod
R Overload “Instrument Setup”.
TM Class of TestlP RFM Noise Te;ﬂ Even we can create analog setu

here(SMT 6.5). Here we extract

GPinclude "General Single DAC_ Test.cpp” virtual void Instrument_set@@tUp parameter necessary for
! { DsP

susing namespace std;

Inheriting TM of general
single DAC test

//Get the fs: sample rate and fc: Center frequency
Fs = ANALOG(AnaSet) .DGI(pinDGT,1).getFrequency();
if (RTSPU) Fc = ANALOG(AnaSet).DGT(pinDGT,1).getCenterFrequency);

L

tclass RFM_NOTSE: blic G al_Single_DAC_Tes :
Slars RN public General_Single_DAC_Test { % Overloading DSP_Calc to make
doubla Freq; calculation according requirement
wvirtual veid DSP_Cale()
I
DOUBLE Fs,Fe: nd center frequency of cout << “The sample frequency << Fs << endl;
=y P 4 2 Y e R AF(RTSFUY cout << “The center ueney is " << Pe << endl:
DOUBLE pwr_noise_1M; The T tored as cpxWave
DOUBLE freq spur_1M;
DOELE freg_fund; =
DOUBLE pn’r_fund; ARRAY_] H
DSP_RF_SPECTRUM {(cpxWave,spectrum, RECT,0): the unit is
PUT_DEBUG(pinDe cturm in din”, spectrum);
[F
INT sample_ptsscpxave.size();
ks DOUBLE min,max;
virtual void initialire() s frequency
General_Single DAC_Test::initialize(): freq_fun ax_bin-sasple_pts/2)*Fs/sasple_pts;
cout << of max signal is shift to IF as:™ << nax_bin
addParaneter(“Frequency_of_Test_Signal®, << “The frequency is: “<<Fc
~double”, << "Then the test signal frequency is{MHz): “<< freq.fund/le
arreq, SUM masx Bin) power
R Thid 5T AT AMICT RSN ETE), DOUBLE fund = pow(10,spectruminax_bin-3]/10)+
pow(10, spectrum(nax_bin-2]/10)+
it @ » pow(10, spectrus[nax_bin-1]/10)+
Add additional parameter “Freq” but always call Eow10, spectrunlass bin 17200,
baseclass’s “initialize()” function so that base PowC10, Bpactruminnch e sl s,
pow(10, spectrum{nax_bin.2]/10)+

TM'’s input parameters will be inherited

(Figure 5)

The final test method class to execute an RFM DAC noise measurement is in figure 6. To
implement the noise test of an RFM DAC in an SOC, we need to make a suitable LB
connection, as overloading the virtual function “LB_Routing_Setup”. Another necessary
setup is to control the DUT suitable for the RFM DAC testing, and this is implemented by
overloading the virtual function TAM_setup().

Customizable Testmethod
TM class of device specific RFM noise test

7#include "RFM_NOISE.cpp" virtual void TAM_Setup()

8 0T

Ousing nanespace std; [PPMU_SETTING PLLCAP_serring; | Qverload TAM SEFQ to
i Inheriting base TM of the G WAL el close, selaisetup device specific test
114+ TestIP RFM Noise Test 64 TASKLIST PLLCAP. task; mode.

12* Testmethod class. .

ly BE ON_FIRST_INVOCATION_BEGIN()
13+ [double dvolts = 0;
14# For each testsuite using| this testmethod, one object of this

15% class is created. . 3
16/ while(dVolts < 2.35)
17class RFM_Test_X: public RFM_NOISE { 73 Primary.getLevelSpecy).change(avdd_2vs", dvolts V};
Overload 7 dvolts += 0.025;
- T4 if(dval 2,35
LB_Routing_Setup():: g s
LB Routing Reset() that Primary.getlevelSpec().change(~avdd 2v5™, 2.5%0.94 V)
) . . are L/B specific to manage }
43 | virtual void LB_Routing_Setup() the signal path on L/B
the signal patn on L/B
441 {
45 ON_FIRST_INVOCATION_BEGIN(); 130, virtual void doDatalog()
46 Routing.util("K32,K33").0ff(); 183177
47 Routing.util("K31").on(); 132 string testname; Overload doDatalog to
i Overload doDatalod to
48 ON_FIRST_INVOCATION_END(); 133 LIMIT lim; p dd |
4} 13 double val; make formatted datalol
50 135 int testnumber=702001;
51| virtual void LB_Routing Reset() 136 string prefix;
59 137
52| { i ixe"
53| ON_FIRST_INVOCATTON_BEGIN(); iif {-;(FrEq == 07.25) prei}x?RFMEUS,":
54 Routing.util("k32,k33").of£(); i ;Si:m_pr:;i? B nal
55 Routing.util("K31").off(); & i ¢
il o H;:T“IIEV‘SC;T&N EN;(‘;_ i 141 Lin.Jow(TH: :6T,1.07); Lin.high(TH::1T,1.33); Limunit("V");
o R R 142 val=REN_PLLVDD;
:’ 143 if (TESTSET().cont(GlobalOver0On).testnumber(testnunber++). judgeAndLog_Pe
58 144 cout << testname << ": "<<val << "V\t PASS" << endl;
145 }
146 else cout << testname << ": "<<val << "V\t FAIL" << endl;
<« |

Using “Inheriting and Overloading” concept in creating reusable universal test method library

(Figure 6)

Conclusion

The introduction of UTM opens the door to using some object oriented programming
methods, such as “design pattern”, “inheritance and overloading,” etc. in test method
programming. With this software method, we can build reusable and easy-to-customize test
methods efficiently.

Using “Inheriting and Overloading” concept in creating reusable universal test method library

