
Using “Inheriting and Overloading” concept in creating reusable universal test method library
 1

Using “Inheriting and Overloading” concept in creating
reusable universal test method library

ZhiJun Xue, Zane Jiang
Zhi-jun.xue@verigy.com Zane.jiang@verigy.com

Introduction

Test method is a critical software component in the V93000 test program. For a
determined test condition and instrument, the test procedure, which is implemented with
test method, is highly reusable. This article introduces how to build a reusable but
customizable universal test method (UTM) library.

The basic idea is to leverage the “design pattern” concept in software engineering. A
“design pattern” is a general reusable solution to a commonly occurring problem in software
design. A “design pattern” is a description or template on how to solve a problem that can
be reused in many different situations. Carefully studying the test procedure of a mixed
signal or RF IP block, we can find that the procedure fits some “pattern” so that the “design
pattern” concept can be leveraged in creating test method.

Template method Pattern Introduction

This article will introduce one pattern to handle specific issues that happen when
developing a kind of TM code in the V93000. Sometimes test engineers want to specify the
order of operations of some kind of test, such as a general RF test, but allow variation for
their own implementations of some of the steps. A general mixed signal and RF test “design
pattern” can be described as the following diagram, and we can use the “template method
pattern” in implementing the test method.

Using “Inheriting and Overloading” concept in creating reusable universal test method library 2

Customizable Testmethod
Flow of a typical Mixed Signal Test

Highly depends on device and generally need to be
customized for different SOC device when integrating TestIP
into SOC T/P

(Figure 1: the pattern of a general mixed signal or RF test)

The Template Method pattern is a fundamental technique for code reuse.
It defines the skeleton of an algorithm in one test, deferring some steps (e.g., “manage

L/B signal path, Hardware setup” etc) to subclasses. Template Method, which is
implemented with a C++ class, lets subclasses redefine certain steps of an algorithm
without changing the algorithm's structure.

With C++ programming, first a class is created that provides the basic steps in the
“template method pattern”. These steps are implemented using methods. Later on,
subclasses change the methods in parent class to implement real actions. Thus the general
Task is saved in one place but the concrete steps may be changed by the subclasses. The
template method thus manages the larger picture of test semantics, and more refined
implementation details of selection and sequence of methods.

This larger picture calls abstract and non- abstract methods for the test at hand. The
non-abstract methods are completely controlled by the template method but the abstract
methods, implemented in subclasses, provide the pattern's expressive power and degree of
freedom. Some or all of the abstract methods can be specialized in a subclass, allowing the
writer of the subclass to provide particular behavior with minimal modifications to the larger
semantics.

The template method (which is non-abstract) remains unchanged in this pattern,
ensuring that the subordinate non-abstract methods and abstract methods are called in the
originally-intended sequence.

The template method pattern is very useful in TM development especially for:

1. Let subclasses implement (through method overriding) behavior that can vary

behavior to fit a dedicated DUT, loadboard and test requirement;
2. Avoid duplication in the code: localize common behavior (e.g., start sequencer, data

uploading, etc.) among subclasses and place it in a common class (in this case, a
super class). In other words, the test engineer can focus on DUT, loadboard and

Using “Inheriting and Overloading” concept in creating reusable universal test method library 3

waveform processing stuff, instead of those instrument relevant activities; Those
instrument relevant activities in common class (super class that is finally delivered as
a shared library) can be easily upgraded while not changing the code in subclass;

3. The best practice (e.g., SmartCalc framework, suitable use of “FLUSH” etc.) can be
placed in a common class, so that high efficient test program can be expected;

4. Control at what point(s) sub-classing is allowed. As opposed to a simple polymorphic
override, where the base method would be entirely rewritten allowing radical change
to the workflow, only the specific steps/details of the workflow are allowed to change;

In a template method, the parent class calls the operations of a subclass and not the

other way around. This is an inverted control structure that's sometimes referred to as "the
Hollywood principle," as in, "Don't call us, we’ll call you".

There is basic C++ knowledge used in the above pattern.
Inheritance lets the developer define classes that model relationships among types,

sharing what is common and specializing only that which is inherently different. Members
defined by the base class are inherited by its derived classes. The derived class can use,
without change, those operations that do not depend on the specifics of the derived type. It
can redefine those member functions that do depend on its type, specializing the function to
take into account the peculiarities of the derived type. Finally, a derived class may define
additional members beyond those it inherits from its base class.

Virtual functions overcome the problems with the type-field solution by allowing the
programmer to declare functions in a base class that can be redefined in each derived class.
Virtual functions can be used to define different behavior dynamically during TM executing.

(Figure 2, an example of C++ inheritance, overloading and virtual function)

The introduction of self-contained, registration free “Unified Test Method” since SMT 6.1

provides a powerful tool in implementing the above concept. First of all, the new style test

Using “Inheriting and Overloading” concept in creating reusable universal test method library 4

method is just a C++ class and the developer can use inheritance or overloading methods
to refine any steps in the run () function but not touch the source code. The customization
can effectively handle the diversity of routing setup, analysis algorithm, datalog, etc.

The hierarchy structure of a test method library

 In the following section, we introduce how to build a comprehensive test method step by
step by inheriting a father class in the library.

Figure 3 is the base class GeneralMxdTest, which is the implementation of the mixed
signal test “template method pattern” as shown in Figure 1.

Customizable Testmethod
The General mixed signal test method class

The base class for mixed signal test to
define the framework

Three basic input parameters
common for most mixed signal
test are defined

The execution process is break
into maximum granularity and
implemented with virtual
member function, user can
overload (customize) it

(Figure 3)

C++ virtual function is defined and used in the “run()” that is actually invoked by

SmarTest to execute a test. The “execution” process is broken into maximum granularity so
that if necessary, the developer can re-define any virtual member function in the child class.

In fact, in the base class, we don’t actually define any virtual function and just provide a
framework. Developers can overload that virtual function according to their requirements in
the child class.

1. doProcessPrometers(): Validate input parameter;
2. doSetup():

a. Instrument_Setup(): setup analog module and all other modules, analog
setup can be called here or with API to program analog module (smartest
6.5);

b. TAM_Setup(): Setup the DUT to a test mode, a general case is to invoke
protocol transaction API to modify a pattern and then run the pattern to
setup registers;

c. LB_Routing_Setup(): call a routing setup or with API to manage the signal
path on the loadboard.

Using “Inheriting and Overloading” concept in creating reusable universal test method library 5

3. doMeasurement(): Execute the test, make exceptional error processing (e.g.
timeout, no trigger etc.) and then retrieve captured response to workstation

4. doAnalysis():
a. Data_Transform(): Make necessary transformation of captured waveform

etc.
b. DSP_Calc(): Calculate required result;

5. doReset(): Reset loadboard, analog module, etc. and make them ready for next
measurement;

6. doDatalog(): Make datalog.

Figure 4 illustrates inheriting the GeneralMxdTest to create a general class for single DAC

test, the key overloading is as the virtual function “doMeasurement”, in which a general
single digitizer operation is implemented.

Customizable Testmethod
General Single DAC Test TM class

Using UTM project wizard to create
TM class and then
Inherit base class of GeneralMxdTest

Additional TM input
parameter handling typical
DAC/DGT condition

Member variable to store
waveform from DGT. The
variable can be operated
with all classes inherited
from this one

Always call the baseclass’s
run() to ensure the whole
process is done

Overload “doMeasuremnt()”
to make measurement with
DGT and capture the
waveform

(Figure 4)

Figure 5 illustrates the process of creating a test method for a specific DAC noise testing,

by inheriting the General DAC test class General_Single_DAC_Test. The key overloading
here is the virtual function “Instrument_Setup” and “DSP_Calc”. In the function
Insturement_Setup(), we coded the DGT setup (e.g., sample rate, etc. that is necessary to
make the DAC noise measurement); while the overloaded function “DSP_Calc” is to
implement the customer defined algorithm in calculating the noise.

Using “Inheriting and Overloading” concept in creating reusable universal test method library 6

Customizable Testmethod
TM Class of TestIP RFM Noise Test

Inheriting TM of general
single DAC test

Add additional parameter “Freq” but always call
baseclass’s “initialize()” function so that base
TM’s input parameters will be inherited

Overload “Instrument Setup”.
Even we can create analog setup
here(SMT 6.5). Here we extract
setup parameter necessary for
DSP

Overloading DSP_Calc to make
calculation according requirement

(Figure 5)

The final test method class to execute an RFM DAC noise measurement is in figure 6. To

implement the noise test of an RFM DAC in an SOC, we need to make a suitable LB
connection, as overloading the virtual function “LB_Routing_Setup”. Another necessary
setup is to control the DUT suitable for the RFM DAC testing, and this is implemented by
overloading the virtual function TAM_setup().

Customizable Testmethod
TM class of device specific RFM noise test

Inheriting base TM of the
TestIP RFM Noise Test

Overload
LB_Routing_Setup();
LB_Routing_Reset() that
are L/B specific to manage
the signal path on L/B

Overload TAM_Setup to
setup device specific test
mode.

Overload doDatalog to
make formatted datalog

Using “Inheriting and Overloading” concept in creating reusable universal test method library 7

(Figure 6)

Conclusion
The introduction of UTM opens the door to using some object oriented programming

methods, such as “design pattern”, “inheritance and overloading,” etc. in test method
programming. With this software method, we can build reusable and easy-to-customize test
methods efficiently.

