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Preface to the Series 
 

ADC and DAC are the most typical mixed signal devices. In mixed signal testing, analog stimulus 
signal is generated by an arbitrary waveform generator (AWG) which employs a D/A converter 
inside, and analog signal is measured by a digitizer or a sampler which employs an A/D converter 
inside. The stimulus signal is created with mathematical method, and the measured signal is 
processed with mathematical method, extracting various parameters. It is based on digital signal 

processing (DSP) so that our test methodologies are often called DSP-based testing.  
Test/application engineers in the mixed signal field should have thorough knowledge about 

DSP-based testing. FFT (Fast Fourier Transform) is the most powerful tool here. This corner will 
deliver a series of fundamental knowledge of DSP-based testing, especially FFT and its related 
topics. It will help test/application engineers comprehend what the DSP-based testing is and 
assorted techniques.  

 

Editor’s Note  
For other articles in this series, please visit the Advantest web site at  
www.verigy.com/go/gosemi.  
 

http://www.verigy.com/go/gosemi


Preface 
 
When applying S-parameter de-embedding to a measured waveform in order to remove the 
distortion caused by the loss of signal path, you may often need to interpolate S-parameters at 

required frequencies. The S-parameters on hand are measured at different frequency points from 
the frequencies you need. Usually in that case you may apply the linear interpolation to calculate 
the S-parameters with referring to the nearest two points right before and after the target test 
frequency. It works fine when the available data is dense, but the linear approximation may often 
cause big error when the original data points are distributed on an extreme curve such as 
S-parameters. The Lagrange interpolation is very useful in that situation. This paper focuses on this 
specific interpolation method. You can find further discussions on the web so that you should learn 
its theoretical background by yourself if you are interested in. The point of this article is how to 
apply it appropriately in our test. 
 
 
 

Interpolation of Curve 
 
Equation (1) describes a linear line shown in Figure 1. The factors a and b are unknown. 
 

bxay            (1) 

 
If you know the coordinates of two different points A(x1,y1) and B(x2,y2) on the line, the unknown 
a and b can be resolved. Then Equation (1) can solve the coordinates of any location P(x,y) on the 
line. 

 
Figure 1:     Linear Approximation                
 
The Lagrange polynomial for the line in Figure 1 is defined as Equation (2). 
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If x=x1, then Equation (2) becomes y1. If x=x2, (2) becomes y2. So Equation (2) definitely describes 
the line in Figure 1. Equation (2) can be modified as follows; 
 

21

1221

21

21
2

12

1
1

21

2

xx

yxyx
x

xx

yy
y

xx

xx
y

xx

xx
y



















       (3) 

 
Consequently Equation (3) is identical to Equation (1) when a=(y1-y2)/(x1-x2) and 
b=(x1y2-x2y1)/(x1-x2). So Equation (2) indicates the coordinates of any location P(x,y) on the line. 
If you have the coordinate x of the point P, Equation (2) resolves the coordinate y of P. 
 

Figure 2 shows a second order curve. Points A(x1,y1), B(x2,y2) and C(x3,y3) exactly sit on the curve. 
The Lagrange polynomial for the curve is defined as follows; 
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If x=x1, then Equation (4) becomes y1. If x=x2, (4) becomes y2. If x=x3, (4) becomes y3. So 
Equation (4) definitely describes the curve in Figure 2. If you know the coordinates of three 
different points A(x1,y1), B(x2,y2) and C(x3,y3), the coordinates of any location P(x,y) on the curve 
is held by Equation (4). If you know the coordinate x of the point P, Equation (4) resolves the 
coordinate y of P. 

 
Figure 2:     3 Points Curve Fitting 
 
The same discussion goes for the third order curve in Figure 3. The Lagrange polynomial for the 
curve is defined as follows; 
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If x=x1, then Equation (5) becomes y1. If x=x2, (5) becomes y2. If x=x3, (5) becomes y3. If x=x4, 
(5) becomes y4. So Equation (5) definitely describes the curve in Figure 3. If you know the 
coordinates of four different points A(x1,y1), B(x2,y2) C(x3,y3) and D(x4,y4), the coordinates of any 
location P(x,y) on the curve meet Equation (5). If you have the coordinate x of the point P, Equation 



(5) resolves the coordinate y of P. 

 
Figure 3:     4 Points Curve Fitting 
 
This discussion goes on for the larger order curves and polynomials. But the second order or third 
order curve with three or four known coordinates of points is good enough for our interpolation. As 
you already notice, you need one more point of data than the order of the polynomial curve. When 
you have two known points of data, you can draw a linear line between them. When you have three 
known points of data, you can draw a second order polynomial among them. When you have four 
known points of data, you can draw a third order polynomial among them. 

 
When the distance between adjacent two points is so far away that the linear interpolation is not 
accurate to approximate a halfway point, the Lagrange interpolation on adjacent three or four 
points is practically useful. The key of this interpolation is the estimated curve definitely goes 
through the given points. This is not the case of regression. This is the important point. 
 
 

Examples of Lagrange Interpolation 
 

 
Figure 4:     Sinusoid Attenuating Amplitude 
 
Let’s look at Figure 4. There are 30 yellow points which is 3-cycle sinusoidal waveform whose 



amplitude is attenuating. Each of the points is connected with a yellow linear line. The yellow lines 
show the linear approximation. The red dots are calculated by using the Lagrange interpolation with 
the third order polynomials based on Equation (5). There are 206 points approximated. Each of 
them is calculated with referring adjacent four yellow points, which are the two points right before 

the taget location and the two points right after the target location in most cases. Even if the target 
is located near the terminal points, the equation can work appropriately. As a result, the estimated 
red dots make a smooth amplitude-attenuating sinusoid. 
List 1 is the example program code that is used for drawing Figure 4.  “dXarray[]” and “dYarray[]” 
are the (X, Y) coordinates of known points which is colored yellow in the figure. The pass parameter 
“dPx” is the X value of a target unknown point. The subroutine returns an estimated Y value. 
 

 
 

 
List 1: Example Code of Lagrange Interpolation Calculation 
 



Let’s look at Figure 5. There are 30 yellow points which is 3-cycle spiral waveform whose amplitude 
is attenuating. This kind of curve is often observed in the Smith chart display in RF measurement. 
Each point would be a (x, y) vector location with monotonically ascending or descending a 
frequency. Each of the points is connected with a yellow linear line. The yellow lines show the linear 

approximation. You can read it at a glance that the linear approximation is not accurate in this case. 
 
The red dots are calculated by using the Lagrange interpolation with the third order polynomials. 
There are 206 points approximated. Each of them is calculated with referring adjacent four yellow 
points, which are the two points right before the taget location and the two points right after the 
target location in most cases. Even if the target is located near the terminal points, the equation can 
work appropriately. As a result, the estimated red dots make a smooth spiral curve. 

 
List 2 is the example program code that is used for drawing Figure 5. The“dFREQ[]” and “CMPLX[]” 
are the monotonically increasing frequency data and (X, Y) coordinates of known points which is 
colored yellow in the figure. These array data would correspond to, for example, the S-parameter 
data of a certain network. The pass parameter “dFrequency” is the frequency of a target unknown 
point. The subroutine returns a pair of estimated vector location value. The procedure is basically 
the same as the one in List 1. The difference is that a real number is returned in List 1 and a complex 
number is returned in List 2. 
 

 
Figure 5:     Sinusoid Attenuating Amplitude 
 



 
 

 

 
List 2: Example Code of 2-dimentional Lagrange Interpolation Calculation 
 


