
Riley, go/semi Author Guidelines 1
Rev. 24-Jul-08

Advanced File Handling Techniques for Complex Waveform
Analysis

Edwin Lowery, MSEE
Verigy, Austin, Texas

Abstract
It is easy during application development and debug to become sidetracked with managing
how to save and view multiple complex array files. Reading and writing files and handling
multiple file formats with C++ can be time consuming, and error prone. SmarTest API’s
can make file handling much easier. The Signal Analyzer tool has new API’s to make
displaying arrays easier as well. This paper demonstrates some of the new API’s introduced
in SmarTest that make file handing and graphical array debug much more efficient and
convenient.

1. Introduction

There are a variety of ways to work with sampled array data for signal analysis. C has
file manipulation libraries, C++ has several file streaming classes and so on. Both can be
used in SmarTest. However, the V93000 offers some new tools as of release 6.5.2 which
make this process a lot easier. This paper presents some basic file read/write API’s and
show how they can be used to save and retrieve data in several formats. It will also cover
some new building blocks for displaying arrays in the Signal Analyzer Tool.

2. File Read/Write API’s

There are two main API’s in SmarTest that are very helpful for working with arrays when

they are needed to be read from and written to a file on the workstation. These API’s are:

READ_WAVEFORM_DATA

and

SAVE_WAVEFORM_DATA

What makes them easy to use is that they support a variety of file formats and in a single

line can create or read a file from the system. Some of the file formats supported include:
ASCII, Custom Waveform file format, Agilent 89600 format, and Signal Studio. To
understand which one is appropriate, the array used (real or complex) along with sample
rate information must be considered.

The Ascii text format file type consists of a single file to represent a single array of data.

This array does not contain sampling rate information. This means that to represent real

Riley, go/semi Author Guidelines 2
Rev. 24-Jul-08

and imaginary arrays, two files must be saved. The custom waveform format is a Verigy
format that also uses one file per array (I and Q) but also saves the sampling rate
information and number of points in the header information of the file. The Signal Studio
format is an Agilent proprietary format that is encrypted and compressed for protecting IP
and easy transportation. It is the format used to communicate with most Agilent bench top
equipment.

Table 1: Common File Formats and Characteristics

Ascii Text
Format

Custom
Waveform
Format

Agilent
89600
Format

Signal
Studio
Format

Includes Sample Rate N Y Y Y
Number of files for I and Q 2 2 1 1
Compressed Binary Data? N N N Y
READ_WAVEFORM_DATA(
) Y Y Y N
SAVE_WAVEFORM_DATA() Y Y Y Y

For the example used in this paper, the Agilent 89600 file format is used to keep track of

a complex waveform. The Agilent 89600 formatted files consist of 10 lines of format
statements and two columns of data as shown below. The advantage of working with files
in this format is in one API, the data, and the sampling rates (stored as XDelta) can be
obtained and used for future analysis. Also the file can be loaded and analyzed directly on
the Signal Analyzer Tool and Agilent 89600 software for EVM and other modulation
analysis. For this reason, this is the recommended file type for working with modulated
signals.

Figure 1 : 89600 File Format

For specific information about how to use these API’s, please see SmarTest’s Technical

Documentation Center topic 113534.

Riley, go/semi Author Guidelines 3
Rev. 24-Jul-08

For this article, it’s easiest to show by example how to use these API’s. Here is a code
example from a working C++ UTM running in 6.5.4.

Figure 2: Example Code using READ_WAVEFORM and SAVE_WAVEFORM API's

The code starts by declaring the data types used, and then reads in an array in the Agilent
89600 format as shown in Figure 1. The entire file along with its sample rate is read in with
a single API call. Next the file is scaled and altered as shown in lines 79 and 80 of Figure 2.
The altered file is saved with a new name in the same 89600 format, then read back into a
different array name “cData2” and then sent to the Signal Analyzer tool using the
PUT_DEBUG statement. The results of this PUT_DEBUG are shown in figure 3 below. Note
that PUT_DEBUG now supports ARRAY_COMPLEX data types. Finally, the new altered data
is saved into the Signal Studio encrypted format. This is very convenient if custom IP is
used to alter or generate a waveform, and it needs to be distributed in a secure way. The
resulting encrypted waveform cannot be read unless it is on Agilent bench equipment or
Verigy test platforms. On the V93000, the ScaledArrayFile.wfm on line 87 can only be
loaded directly into V93000 instrument memory, and not read by other API’s.

Figure 3: Results of Array manipulation in example code above.

Riley, go/semi Author Guidelines 4
Rev. 24-Jul-08

3. Debugging Signals using the Signal Analyzer Tool

For debug and development, the ability to graphically show arrays (both ARRAY_DOUBLE
and ARRAY_COMPLEX) is extremely important. Here is some more code intended to
demonstrate some of the new graphing API’s available as of SmarTest revision 6.5.2.

Figure 4: Sample Code using multiple Graphing Techniques

3.1 The PUT_DEBUG API
PUT_DEBUG: This is an API that is used to put arrays of information in a graphical format
in the Signal Analyzer tool. Very important to its functionality is that the PUT_DEBUG API is
only run when the ‘debug_analog’ testflow flag is set to 1. This makes sure that these
API’s are only run while debugging to ensure test time is not impacted in production.

From Line 95 of the code above, the output of the PUT_DEBUG statement looks like this:

Riley, go/semi Author Guidelines 5
Rev. 24-Jul-08

Figure 5: Signal Analyzer results of PUT_DEBUG API and ARRAY_COMPLEX data type.

Looking at figure 5 above, a few areas should be pointed out. On the upper left, the result
waveforms are displayed. These are waveforms that are in Signal Analyzer memory, but
have not yet been assigned to a graph. Any graphs that exist in memory will be seen on
the right-hand side. Graphs consist of waveforms and whatever formatting has been
applied to them through the selection menus. In the figure, Graph #2 is selected, and it
consists of one waveform that is active in the graph, these details are shown in the bottom
left panel or Graph summary.

In order to work with these two arrays with functions, such as complex spectrum analysis or
demodulation analysis from the Signal Analyzer Tool, a few things must be done. First the
“Q” waveform must be copied from Graph 2 Above.

Figure 6: Copying the Q trace from Graph 2

Riley, go/semi Author Guidelines 6
Rev. 24-Jul-08

Graph 1 then needs to be selected and then clipboard memory must be pasted into the
graph for the “I” array.

Figure 7: Pasting the Q trace onto Graph 1

This allows the two one-dimensional arrays to be shown on a single graph as a complex
array as shown below.

Figure 8: Combined I and Q arrays in a Single Graph

For modulation domain analysis, perform a right-click and select Analysis and then
Demodulaton.

Riley, go/semi Author Guidelines 7
Rev. 24-Jul-08

Figure 9: Demodulation of a Complex Signal

Next, the proper modulation format is selected…

Figure 10: Selection of Demodulation Standard

and the sample rate is entered into the Sample Rate box, and any desired plots are
selected. Note that for Agilent 89600-formatted files and Agilent Signal Studio-formatted
files, the Sample Rate field is automatically populated.

Riley, go/semi Author Guidelines 8
Rev. 24-Jul-08

Figure 11: Adding in the Sample Rate by Hand

Figure 12: After Execution, EVM Results are shown in GUI

Riley, go/semi Author Guidelines 9
Rev. 24-Jul-08

Finally, the Constellation plot can be seen below for this case, since it was selected in the
GUI.

Figure 13: EVM Plot Calculated in SmarTest

This approach is relatively easy and the standard way that has been used in the past.
However, some important improvements have been added that make these steps even
easier.

3.2 PutDebugTrace and PutDebugGraph API’s
There are two main new API’s to help the process of displaying arrays of information to the
Signal Analyzer tool. These are PutDebugTrace() and PutDebugGraph().

PutDebugTrace(); - API for sending a specific array to the Signal Analyzer tool. Works
when the debug_analog flag is set to on. Can handle ARRAY_D, vector<double>,
ARRAY_COMPLEX, vector<double>& iVector, vector<double>& qVector, and many more
types. Is used to build an object that can be used in PutDebugGraph() below…

PutDebugGraph(); - API for creating an entire graph in the Signal Analyzer tool. Also works
when debug_analog flag is on, but this can be overridden if desired. Can also be used to
set labels for X and Y axes along with titles and units. When used properly, much GUI work
can be reduced.

Riley, go/semi Author Guidelines 10
Rev. 24-Jul-08

The same results as shown in the PUT_DEBUG case above can be obtained by using the
PutDebugTrace command. This API creates a new trace that can be further used and
manipulated. An example of this is seen on lines 98 and 99 of the code example. In this
case, the Result Waveform section of the Signal Analyzer tool gets populated with the new
waveform “PutDebugTraceWaveform_I” and “PutDebugTrace Waveform_Q”. However, line
102 shows that the newly created myTrace object can now be populated into a graph
automatically. Notice that the I and Q waveforms are already loaded into this new graph
(Figure 15.)

Figure 14:Pre-Loading I and Q Traces into a Graph

Furthermore, for signal analysis, if you right-click and select modulation, or spectrum
analysis, the sampling rate is also carried over from the graph as shown below. This
reduces the amount of typing and can prevent errors in the case of multi digit precision
sampling rates.

Riley, go/semi Author Guidelines 11
Rev. 24-Jul-08

Figure 15: Sample Rate Automatically Acquired from Graph, No Need to Type it in

The graphs created can even be customized to show outputs with units and labels. The
final example is shown on lines 105 through 109. Here a PutDebugGraph is used to create
a time domain plot that includes the X axis shown in microseconds and the Y axis shown in
millivolts.

Riley, go/semi Author Guidelines 12
Rev. 24-Jul-08

4. Conclusion
By correctly using the READ_WAVEFORM_FILE() API and the SAVE_WAVEFORM() API’s,
many lines of complicated code can be reduced. A benefit of sharing modulated or complex
waveforms in the 89600 format is that the waveform and its sampling parameters are
automatically shared together. These files can be loaded directly into the signal analyzer
tool as well as into bench equipment analyzers without modification. Finally, the use of the
PutDebugTrace() API is a great way to efficiently get complex data into the signal analyzer
tool in an easily manageable format.

12.2. References

For more information about these API’s, please see Verigy’s Technical Documentation
Center. Enter in topics: 113534 (Working with I/Q files), 118743 (PutDebugTrace), and
118744 (PutDebugGraph).

13. Copyright
Verigy owns the copyrights of all submitted papers/articles.

