
 Page 1 of 6

A Novel Dynamic Method to Generate PRBS Pattern

Wei-Min ZHANG
ADC Shanghai, Verigy

wei-min.zhang@verigy.com

Abstract
PRBS patterns have been widely used in high speed device testing. To set up PRBS

patterns in V93000 SmarTest program development, the engineer would traditionally create a

PRBS pattern in ASCII format and then do ASCII to binary conversion process to generate the

final loaded pattern. In this paper, a novel dynamic method will be introduced to simplify this

whole process and can generate PRBS patterns directly and dynamically based on

VECTOR_LABEL_EDIT APIs. It not only shortens development time but also provides an

advantage in flexibility and extended capability.

Key Words - High Speed, PRBS, Pattern Generation, VECTOR_LABEL_EDIT

1. Introduction

PRBS (Pseudorandom binary sequence) patterns [1] have been widely used in high speed

device testing. To set up a PRBS pattern in V93000 SmarTest program development, it is a

common task to generate a loaded PRBS pattern. There are several ways to generate a PRBS

pattern. For example, use the hardware PRBS generator if applicable, but in most cases we still

need normal PRBS patterns to be stored in vector memory.

Traditionally, the engineer will need to create a PRBS pattern in ASCII format. For example:

AVC format file and timing mapping file in SmarTest, then use the ASCII interface tool – aiv to

do ASCII to Binary pattern conversion and generate the final loaded pattern. The whole process

is complex and time consuming.

Actually, with SmarTest version 6.3.2 and above, a very useful new API: VEC_LABEL_EDIT[2]

is built in. It provides the capability to dynamically modify label vectors at runtime.

In this paper, a novel dynamic method will be introduced to generate PRBS patterns based

on VECTOR_LABEL_EDIT. It not only shortens development time but also provides advantages in

flexibility and extended capability.

2. Key Elements for PRBS pattern Generation

For PRBS pattern generation, several key elements need to be considered.

 PRBS data stream generation
 Timing waveform definition - the waveform index order
 PRBS vector data download

 Page 2 of 6

In the following sections, each topic will be discussed and practical ways to address these

challenges will be provided.

2.1. PRBS Data Stream Generation

PRBS patterns are typically described by the shorthand notation “2X-1”. The power, X,

indicates the length of the shift registers used to create the pattern and every possible

combination of the X number of bits (minus one). The X value also indicates the longest series of

0’s and 1’s present in one pattern.

PRBS pattern Primitive Polynomial Pattern bits

27-1 1+X6+X7 127

215-1 1+X14+X15 32,767

223-1 1+X18+X23 8,388,607

231-1 1+X28+X31 2,147,483,647

Table 1. Typical PRBS primitive polynomial

The PRBS data stream is usually generated by a linear feedback shift register (LFSR)[3].

There are basically two possible realizations of LFSR – Fibonacci (many-to-one) and Galois (one-

to-many). An LFSR represented by a primitive polynomial will produce a maximal length

sequence.

Figure 1. Fibonacci (many-to-one) LFSR with two taps

Many PRBS generators simulate the Fibonacci LFSR process by algorithm to generate the

PRBS data stream.

2.1.1. PRBS generator polynomial selection

The first step is to select the PRBS generator polynomial, The following function only need

specify the power of polynomial, then according to primitive polynomial to setup tap variables.

PRBS data stream

Generation

Timing waveform

definition – waveform

index order

PRBS Data Vector

Dynamic Download

 Page 3 of 6

static unsigned long PRBS_POLYNOMIAL_1ST ;

static unsigned long PRBS_POLYNOMIAL_2ND ;

static void set_polynomial (int order)

{

 switch (order)

 {

 case 7 : //1+X6+X7

 PRBS_POLYNOMIAL_1ST = 0x00000040UL ; //0x40 = b01000000

 PRBS_POLYNOMIAL_2ND = 0x00000020UL ; //0x20 = b00100000

 break ;

 case 15 : //1+X14+X15

 PRBS_POLYNOMIAL_1ST = 0x00004000UL ;

 PRBS_POLYNOMIAL_2ND = 0x00002000UL ;

 break ;

 case 23 : //1+X18+X23

 PRBS_POLYNOMIAL_1ST = 0x00400000UL ;

 PRBS_POLYNOMIAL_2ND = 0x00020000UL ;

 break ;

 }

}

2.1.2. PRBS data bit generation by LFSR algorithm

To simulate the LFSR process, the algorithm uses the following prbs_data() function.

static unsigned long prbs_shift_reg ;

static int prbs_databit(void) /* return 0 or 1 */

{

 bool first_tap , second_tap , newbit ;

 first_tap = (prbs_shift_reg & PRBS_POLYNOMIAL_1ST)>0 ;

 second_tap = (prbs_shift_reg & PRBS_POLYNOMIAL_2ND)>0 ;

newbit = first_tap ^ second_tap; //XOR

 prbs_shift_reg [index] <<= 1 ;

 prbs_shift_reg [index] &= 0xfffffffeUL ;

 prbs_shift_reg [index] |= (unsigned long)newbit ;

 return ((int) newbit) ;

}

Use repeat to call this prbs_data() function, then the PRBS data stream can be generated.

2.1.3. put PRBS setting together

The PRBS_SETTING() function will integrate the polynomial setup and also seed the

initialize setup.

void PRBS_SETTING(int polynomial, int seed)

{

 set_polynomial(polynomial) ;

 prbs_shift_reg = seed ; /* set initial seed for prbs generation */

}

 Page 4 of 6

2.2. V93000 timing waveform definition

The second step is defining PRBS waveform when the data stream is ready. Generally in

high speed waveform definition, Xmodes will be used to utilize the advantage of multiple driver

edges and compare edges in V93000, and also to archive the maximum data rate. In SmarTest,

waveforms can be defined in STD mode or PS3600-FAST mode. No matter which mode is used,

the key thing is the waveform index should be the same as the defined waveform sharp, so it

provides the most simplified waveform mapping algorithm. It will used in the following pattern

generation.

STD mode:

PINS RX_P@diff

 0 "d1:0 d2:0 d3:0 d4:0 d5:0 d6:0 d7:0 d8:0" 00000000

 1 "d1:0 d2:0 d3:0 d4:0 d5:0 d6:0 d7:0 d8:1" 00000001

…

fe "d1:1 d2:1 d3:1 d4:1 d5:1 d6:1 d7:1 d8:0" 11111110

ff "d1:1 d2:1 d3:1 d4:1 d5:1 d6:1 d7:1 d8:1" 11111111

brk "10101010"

PINS TX_P@diff

 0 "d1:FNZ r1:L r2:L r3:L r4:L r5:L r6:L r7:L r8:L" LLLLLLLL

 1 "d1:FNZ r1:L r2:L r3:L r4:L r5:L r6:L r7:L r8:H" LLLLLLLH

 fe "d1:FNZ r1:H r2:H r3:H r4:H r5:H r6:H r7:H r8:L" HHHHHHHL

 ff "d1:FNZ r1:H r2:H r3:H r4:H r5:H r6:H r7:H r8:H" HHHHHHHH

FAST mode:

PINS RX_P@diff

 0 "[01][01][01][01][01][01][01][01]"

brk "10101010"

PINS TX_P@diff

 0 "[LH][LH][LH][LH][LH][LH][LH][LH]"

2.3. Novel way to PRBS Data Vector Dynamic Download

The third step is the VEC_LABEL_EDIT APIs will be used for vector dynamic download,

since Xmodes will be used in waveform definition, attention needs to be paid to handle Xmodes

correctly. The following code will be based on Xmodes and shift single bits to data and prepare

each vector for the physical waveform index. Finally the index data stored in VECTOR_DATA will

be downloaedd directly to vector memory.

void PATTERN_GEN(string label, int pattern_start, int XMODE,int totalDataBits, string

pinlist)

{

 map<string, VECTOR_DATA *> map_Vector;

 map<string, VEC_LABEL_EDIT *> map_Label;

 int data;

 STRING_VECTOR pins = PinUtility.getDigitalPinNamesFromPinList

(pinlist,TM::I_PIN|TM::O_PIN|TM::IO_PIN,false,false,PIN_UTILITY::DEFINITION_ORDER);

for(unsigned int i=0;i<pins.size();i++)

{

 map_Vector[pins[i]] = new VECTOR_DATA[totalDataBits];

 map_Label[pins[i]] = new VEC_LABEL_EDIT(label,pins[i]);

 Page 5 of 6

}

for(int i=0; i<totalDataBits; i++)

{

 //process Xmode data

 data = 0;

 for(int j=0;j<XMODE;j++)

 {

 data <<= 1;

 data |= prbs_databit(); //continue call prbs_databit get next bit

 }

//store data prepare for modification

 for(unsigned int pin=0;pin<pins.size();pin++)

 {

map_Vector[pins[pin]][i].vectorNum = pattern_start+i;

 map_Vector[pins[pin]][i].phyWvfIndex = data;

 }

}

 //download vector

 for(unsigned int pin=0;pin<pins.size();pin++)

 {

map_Label[pins[pin]]->downloadUserVectors(map_Vector[pins[pin]],

totalDataBits);

 }

 //release memory

 for(unsigned int i=0;i<pins.size();i++)

 {

 delete [] map_Vector[pins[i]];

 delete map_Label[pins[i]];

 }

}

2.4. PRBS pattern generation by test method

Putting all of the above code into a single C++ header file, for example, file name can be

called PATTERN_GEN.h, then it is easier to re-use this function in the test method code. The

following test method code provides the sample to generate a PRBS7 pattern.

But keep in mind before executing that test method code, two empty pattern labels need

to be prepared that will be modified in the code. And the key thing for empty pattern labels is

the need to insert the correct number of vector lines. For example, for the PRBS7 pattern, 127

vector lines need to be inserted.

 #include “PATTERN_GEN.h”
 virtual void run()

 {

 int XMODE = 6;

 int totalDataBits = 127;

 PRBS_SETTING(7,1); //PRBS7, seed = 1

 PATTERN_GEN("PRBS_pRX",totalDataBits, XMODE, "RX_P,RX_N”);

 PRBS_SETTING(7,1); //PRBS7, seed = 1;

 PATTERN_GEN("PRBS_pTX",totalDataBits, XMODE, "TX_P,TX_N”);

 return;

 }

From serial PRBS data stream

to Xmode vector index

 Page 6 of 6

 Figure 2. Example Empty pattern label Figure 3. Example Pattern after modification

Figure 4. Example PRBS7 Pattern timing diagram

3. Summary

In this paper, the PRBS generation theory and a practical way to generate a PRBS pattern

dynamically by SmarTest VEC_LABEL_EDIT APIs have been introduced. The process is shown

that also provides re-useable functionality, and flexibility on customization and extended

capability. It can fit different timing waveform definition by only specifying different Xmode

parameter.

Furthermore, when PRBS patterns combine with the 8B10B coding process, it can be easier

to add on to the current algorithm and generate the target data stream if needed. For high

speed PRBS pattern synchronization, since the whole PRBS pattern can generated by a test

method dynamically, it also improves debug efficiency since it can very easily adjust the settings

based on online debug result.

4. References

[1] http://en.wikipedia.org/wiki/Pseudorandom_binary_sequence

[2] https://www.verigy.com/help/topic/com.verigy.itee.help.smartest.ui.7.1.0/95305.htm

[3] http://en.wikipedia.org/wiki/Linear_feedback_shift_register

http://en.wikipedia.org/wiki/Pseudorandom_binary_sequence
https://www.verigy.com/help/topic/com.verigy.itee.help.smartest.ui.7.1.0/95305.htm
http://en.wikipedia.org/wiki/Linear_feedback_shift_register

