

Hideo Okawara’s
Mixed Signal Lecture Series

DSP-Based Testing – Fundamentals 13

Inverse FFT

Verigy Japan
May 2009

Preface to the Series

ADC and DAC are the most typical mixed signal devices. In mixed signal testing, analog

stimulus signal is generated by an arbitrary waveform generator (AWG) which employs a D/A
converter inside, and analog signal is measured by a digitizer or a sampler which employs an
A/D converter inside. The stimulus signal is created with mathematical method, and the
measured signal is processed with mathematical method, extracting various parameters. It is
based on digital signal processing (DSP) so that our test methodologies are often called
DSP-based testing.

Test/application engineers in the mixed signal field should have thorough knowledge about

DSP-based testing. FFT (Fast Fourier Transform) is the most powerful tool here. This corner will
deliver a series of fundamental knowledge of DSP-based testing, especially FFT and its related
topics. It will help test/application engineers comprehend what the DSP-based testing is and
assorted techniques.

Editor’s Note

For other articles in this series, please visit the Verigy web site at
 www.verigy.com/go/gosemi.

Inverse FFT
In mixed signal testers, digitizers, samplers and AD converters capture waveforms which are

time domain data. Discrete Fourier transform (DFT) processes the waveform data into fre-
quency spectrum which is frequency domain data. Frequency spectrum is used to parameterize
and analyze signal amplitude, distortion, noise, frequency response, and so on. In mixed signal
tests, more than 99% of AC parameter analysis is done by the frequency spectrum. Therefore
FFT that is the fast version of DFT is the most useful and powerful tool in mixed signal tests. DFT
and FFT were discussed in the previous newsletter articles. Inverse FFT or IFFT is the opposite
operation against FFT. IFFT processes frequency domain spectrum into time domain waveform.
IFFT is not so popular compared to FFT, however, it can be utilized to manipulate waveform data

Okawara, Inverse FFT 1
Rev. May-09

http://www.verigy.com/go/gosemi

such as filtering, compensation, modulation and so forth. There are some points to get IFFT
performed successfully. In this article, you will have knowledge of performing IFFT correctly.

Fourier Transform Pair
First off, let’s look at the nature of Fourier transform pair. Figure 1 (e) depicts 16-point time

domain signals including DC and three different frequency AC signals. Figure 1 (a) is DC 1V. (b)
is 3-cycle cosine waveform. (c) is 5-cycle sine waveform. (d) is 7-cycle composite cosine and
sine waveform. The waveform (d) can be described as an equation as follows;

⎟
⎠
⎞

⎜
⎝
⎛ ⋅∗−⎟

⎠
⎞

⎜
⎝
⎛ ⋅∗=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ⋅−⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ⋅=⎟

⎠
⎞

⎜
⎝
⎛ +⋅

kk

kkk

16
72sin

2
1

16
72cos

2
1

4
sin

16
72sin

4
cos

16
72cos

416
72cos

ππ

ππππππ
.......................(1)

It contains cosine and sine waveforms with equal amplitudes. Finally the waveform (e) is the

summation of (a), (b), (c) and (d) so that it is the multi-tone signal created by the source code
in List 1. The waveform (e) is a real number data array.

Figure 1: Time Domain Waveform (Multi-tone)

 1: INT i,M,N;
 2: DOUBLE dP;
 3: ARRAY_D dWave;
 4:
 5: N=16; // Number of points
 6: dWave.resize(N);
 7: for (i=0;i<N;i++) dWave[i]=1.0; // DC
 8: M=3;
 9: dP=2.0*M_PI*M/N; // + (3-cycle cosine)
10: for (i=0;i<N;i++) dWave[i]=dWave[i]+cos(dP*i);

Okawara, Inverse FFT 2
Rev. May-09

11: M=5;
12: dP=2.0*M_PI*M/N; // + (5-cycle sine)
13: for (i=0;i<N;i++) dWave[i]=dWave[i]+sin(dP*i);
14: M=7;
15: dP=2.0*M_PI*M/N; // + (7-cycle cosine & sine)
16: for (i=0;i<N;i++) dWave[i]=dWave[i]+cos(dP*i+M_PI/4);
17:

List 1: Waveform Generation (Real Number Array)

Let’s see how a cosine signal is displayed in the frequency domain and how a sine signal is

displayed in the frequency domain. A cosine signal may be noted as an even function, and a sine
signal may be noted as an odd function. We know imaginary numbers in mathematics. But the
measured waveform is always real number data. In our daily measurement jobs, test signals are
captured as real numbers. Let’s perform FFT to the real number data array (e) to see the
frequency spectrum. The code is as follows.

18: INT Nsp;
19: ARRAY_D dSp;
20: ARRAY_COMPLEX CSp1;
21:
22: DSP_FFT(dWave,CSp1,RECT);
23: Nsp=CSp1.size();
24:

List 2: FFT of Real Input Data Array

Figure 2: Frequency Domain Spectrum (Half Page Spectrum)

FFT performs at Line 22 in List 2. The input waveform is a real data array “dWave.” The API

at Line 22 derives a complex number array “CSp1” displaying in Figure 2. The number of
spectrum Nsp is N/2 so that the frequency element index is settled from 0 to 7 here. At Fre-
quency 0, you can see the spectrum (1.0 + j▪0.0), which shows DC 1V. You can see the
spectrum (1.0 + j▪0.0) at Frequency 3, the spectrum (0.0 – j▪1.0) at Frequency 5, and the
spectrum (0.707 + j▪ 0.707) at Frequency 7. In this operation, you should understand as fol-
lows.

DC is the real part at Frequency 0. The imaginary part is 0.
“cosine” signal appears in the real part. The imaginary part is 0.

Okawara, Inverse FFT 3
Rev. May-09

“sine” signal appears in the imaginary part. The real part is 0.
The spectrum at Frequency 7 is consistent of the rules 2 and 3. Frequency 7 is the combi-

nation of cosine and sine so that the cosine component gives (0.707 + j▪0.0) and the sine
component gives (0.0 –j▪(-0.707)). Consequently the summation of the two complex numbers
becomes (0.707 +j▪0.707), which is true at Frequency 7 in Figure 2.

In general the FFT is designed to deal with complex input data and complex output data. Now
let’s see how the FFT performs with complex number input waveform array “CWave”. The real
number waveform data is expressed as complex numbers formally. The difference is the type of
the variable. The real number waveform “dWave” fills in the real component of “CWave”, and the
imaginary component of “CWave” is filled up with zero perfunctory. The processing is listed as
follows.

25: ARRAY_COMPLEX CWave,CSp2;
26:
27: CWave.resize(N);
28: for (i=0;i<N;i++) {
29: CWave[i].real()=dWave[i]; // Real number waveform
30: CWave[i].imag()=0.0; // Imaginary data is zero.
31: }
32:
33: DSP_FFT(CWave,CSp2,RECT);
34:

List 3: FFT with Complex Input Array (Zero Imaginary)

In Lines 27 to 31, the real number waveform data is copied into the real part of the complex

number array, and the imaginary part is filled up with zero. FFT performs at Line 33. Now both
input waveform and the output spectrum are expressed with complex numbers. It is mathe-
matically elegant. Figure 3 shows the FFT result.

Figure 3: Frequency Domain Spectrum (Full Pages Spectrum)

The size of CSp2[] is double of the size of CSp1[], and equal to the number of input waveform

elements N. The DC is still (1+j▪0); however, AC signal lengths are slashed half. In exchange for
it, the left half plane of the real part looks line-symmetrically copied to the right half plane, while
the left half plane of the imaginary part looks point-symmetrically copied to the right half plane.

Okawara, Inverse FFT 4
Rev. May-09

In other words, the right half plane is complex-conjugate-symmetrical to the left half plane. The
reason that each length of the vectors is halved is based on the equation as follows.

()

()θθ

θθ

θ

θ

jj

jj

ee
j

ee

−

−

−=

+=

2
1sin

2
1cos

...(2)

ejθ and e-jθcorrespond to the left and right planes in Figure 3.
Let’s summarize the relationship between the input waveform and the output spectrum. See

Figure 4.

Figure 4: Time Domain vs. Frequency Domain

Real number waveform makes complex conjugate spectrum. This is the point.

Discrete IDFT
For the input complex data series {xi}, the k-th element of the discrete Fourier transform Gk

is expressed as follows;

∑∑
−

=

−

=

−
⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅−⋅==

1

0

1

0

2 2sin2cos11 N

i
ii

N

i

N
kij

ik N
kixj

N
kix

N
ex

N
G πππ

...................................(3)

where N is the number of data points, and k=0, 1, 2, …, N-1. Waveform data can be con-

verted into frequency spectrum data with Equation (3).
The inverse DFT is defined as very close to Equation (3) as follows;

∑ ∑
−

=

−

=
⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅+⋅==

1

0

1

0

2 2sin2cos
N

k

N

k
kk

N
kij

ki N
kiGj

N
kiGeGx πππ

..(4)

where i=0, 1, 2, …, N-1. The difference is the sign of the imaginary part and the scaling factor

1/N. Equations (3) and (4) may be called discrete Fourier transform pair, which should be ap-
plied to complex input data and complex output data.

IDFT Program Code
According to Equation (4), you can create your own IDFT program as follows.

A01: //
A02: COMPLEX Cmult(COMPLEX CX, COMPLEX CY)
A03: { // Complex Numbers Multiplication
A04: COMPLEX CZ;
A05: CZ.real()=CX.real()*CY.real()-CX.imag()*CY.imag();
A06: CZ.imag()=CX.real()*CY.imag()+CX.imag()*CY.real();
A07: return (CZ);
A08: }

Okawara, Inverse FFT 5
Rev. May-09

A09: //
A10: void IDFT(
A11: ARRAY_COMPLEX & CSp, // Input Spectrum Array
A12: ARRAY_COMPLEX & CWave // Output Waveform Array
A13:)
A14: {
A15: INT i,j,Ndata;
A16: DOUBLE dQ,dAi,dBi,dP;
A17: COMPLEX CX,CY;
A18:
A19: Ndata=CSp.size();
A20: CWave.resize(Ndata);
A21: dP=2.0*M_PI/Ndata;
A22: for (i=0;i<Ndata;i++) {
A23: dAi=0.0;
A24: dBi=0.0;
A25: for (j=0;j<Ndata;j++) {
A26: dQ=(DOUBLE)i*(DOUBLE)j*dP;
A27: CX.real()=cos(dQ);
A28: CX.imag()=sin(dQ);
A29: CY=Cmult(CSp[j],CX);
A30: dAi=dAi+CY.real();
A31: dBi=dBi+CY.imag();
A32: }
A33: CWave[i].real()=dAi;
A34: CWave[i].imag()=dBi;
A35: }
A36: }
A37:

List 4: IDFT Program Code

In List 4, the input spectrum is supposed to be full-page array as Figure 3. The size of the

spectrum array is equal to the size of the waveform array. The V93000 SOC tester provides an
API for IFFT routine as follows.

DSP_IFFT(CSpectrum, CWaveform);

The point of this API is exactly the same as the IDFT routine. The input spectrum array and

the output waveform array are complex numbers. They are the same size arrays.

Guide to Successful IFFT
As discussed previously, the waveform data is real number data. So when generating a

waveform with applying IFFT, the result must be real number waveform and zero imaginary
part. As Figure 4 shows, the relationship between time domain waveform and frequency domain
spectrum is reversible with Fourier transform pair so that, in order to generate any real number
waveform, the frequency domain data must be complex conjugate. Therefore you should design
your frequency spectrum as complex conjugate. In other words, the real part of the frequency
spectrum must be designed line-symmetrically and the imaginary part of the frequency spec-
trum must be designed point-symmetrically. This is the key to successfully generate a waveform
by IFFT. So when using IFFT, you should always keep in mind the key word “complex conjugate”
in the spectrum.

Okawara, Inverse FFT 6
Rev. May-09

Figure 5: Complex Conjugate

Let’s reconstruct the original waveform in Figure 3 from the spectrum calculated in the line 33

in List 3. The spectrum is designated as CSp2[] in List 3, and it is already complex conjugate
there. So it is simple.

35: ARRAY_COMPLEX CWave2;
36: ARRAY_D dWave2;
37:
38: DSP_IFFT(CSp2,CWave2); // IFFT
39: dWave2.resize(CWave2.size()); // Waveform container
40: dWave2=CWave2.getReal(); // Take the Real Part
41:

List 5: IFFT Coding with CSp2[] (1)

When using CSp1[] in Figure 2 as the input spectrum, it is half page spectrum so that you

should take care of the size, scaling and complex conjugate in the right half page. See List 6.

42: ARRAY_COMPLEX CSp0,CWave1;
43: ARRAY_D dWave1;
44:
45: Nsp=CSp1.size(); // Half page spectrum size
46: CSp0.resize(2*Nsp); // Size doubled
47: CSp0[0].real()=CSp1[0].real(); // DC
48: CSp0[0].imag()=0.0;
49: for (i=1;i<Nsp;i++) {
50: CSp0[i].real()=0.5*CSp1[i].real(); // Slash half
51: CSp0[i].imag()=0.5*CSp1[i].imag(); // Slash half
52: CSp0[N-i].real()= CSp0[i].real(); // Complex-
53: CSp0[N-i].imag()= -CSp0[i].imag(); // Conjugate
54: }
55: CSp0[Nsp].real()=0.0;
56: CSp0[Nsp].imag()=0.0;

Okawara, Inverse FFT 7
Rev. May-09

Okawara, Inverse FFT 8
Rev. May-09

57:
58: DSP_IFFT(CSp0,CWave1); // IFFT
59: dWave1.resize(CWave1.size()); // Waveform container
60: dWave1=CWave1.getReal(); // Take the real part
61:

List 6: IFFT Coding with CSp1[] (2)

In short, for successful IFFT or IDFT, if you have a front page spectrum as Figure 2, you need

to create the back page from the front page adjusting the magnitude as Figure 3. Then you can
get real waveform data and zero imaginary waveform. At the end, take the real part only for real
waveform.

Cases that IFFT Is Needed
When you would like to modify or manipulate a waveform, it is an opportunity for IFFT to be

called. For example, the following situations would need the help of IFFT.

• Filtering in Frequency Domain
• FIR(Finite Impulse Response) Generation from Frequency Response
• Refining Fundamental Signal with Selecting Frequency Spectrum
• Waveform Interpolation by Zero Insertion
• S/N Calculation in Time Domain
• Differentiation of Waveform in Frequency Domain Operation
• Multi-tone Generation by Frequency Domain (High-speed)
• AM Modulated Waveform Generation by Frequency Domain

IFFT-employed practical applications will be discussed in the future newsletter articles.

Appendix: Playing IFFT with using FFT Routine
As seen in Equation (3) and (4), the IDFT procedure is quite similar to the DFT procedure. The

difference is only the sign of sine term and scaling that is not a big issue. Just in case you have
no appropriate IFFT API available for some reason, you could utilize the FFT routine for per-
forming IFFT. This is a kind of workaround. All you have to do is to reverse the order of the input
spectrum array. Let’s take the full-page spectrum of CSp2[] in List 3. The procedure is as fol-
lows.

62: ARRAY_COMPLEX CSp3,CWave3;
63: ARRAY_D dWave3;
64:
65: CSp3.resize(N); // Full-page complex conjugate spectrum
66: CSp3[0]=CSp2[0]; // Copy the DC only.
67: for (i=1;i<N;i++) { // Reverse order
68: CSp3[i].real()=CSp2[Ndata-i].real();
69: CSp3[i].imag()=CSp2[Ndata-i].imag();
70: }
71: DSP_FFT(CSp3,CWave3,RECT); // FFT instead of IFFT
72: dWave3.resize(N); // Waveform container
73: dWave3=CWave3.getReal(); // Take the real part
74: DSP_MUL_SCL((DOUBLE)N,dWave3,dWave3); // Scaling
75:

List 7: Playing IFFT with FFT API

	Preface to the Series
	Editor’s Note
	Inverse FFT
	Fourier Transform Pair
	Discrete IDFT
	IDFT Program Code
	Guide to Successful IFFT
	Cases that IFFT Is Needed
	Appendix: Playing IFFT with using FFT Routine

