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Preface to the Series 
 
ADC and DAC are the most typical mixed signal devices. In mixed signal testing, analog 

stimulus signal is generated by an arbitrary waveform generator (AWG) which employs a D/A 
converter inside, and analog signal is measured by a digitizer or a sampler which employs an 
A/D converter inside. The stimulus signal is created with mathematical method, and the 
measured signal is processed with mathematical method, extracting various parameters. It is 
based on digital signal processing (DSP) so that our test methodologies are often called 
DSP-based testing.  

 
Test/application engineers in the mixed signal field should have thorough knowledge about 

DSP-based testing. FFT (Fast Fourier Transform) is the most powerful tool here. This corner will 
deliver a series of fundamental knowledge of DSP-based testing, especially FFT and its related 
topics. It will help test/application engineers comprehend what the DSP-based testing is and 
assorted techniques.  

 

Editor’s Note  
 
For other articles in this series, please visit the Verigy web site at 
 www.verigy.com/go/gosemi.  
 

Inverse FFT 
In mixed signal testers, digitizers, samplers and AD converters capture waveforms which are 

time domain data. Discrete Fourier transform (DFT) processes the waveform data into fre-
quency spectrum which is frequency domain data. Frequency spectrum is used to parameterize 
and analyze signal amplitude, distortion, noise, frequency response, and so on. In mixed signal 
tests, more than 99% of AC parameter analysis is done by the frequency spectrum. Therefore 
FFT that is the fast version of DFT is the most useful and powerful tool in mixed signal tests. DFT 
and FFT were discussed in the previous newsletter articles. Inverse FFT or IFFT is the opposite 
operation against FFT. IFFT processes frequency domain spectrum into time domain waveform. 
IFFT is not so popular compared to FFT, however, it can be utilized to manipulate waveform data 
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such as filtering, compensation, modulation and so forth. There are some points to get IFFT 
performed successfully. In this article, you will have knowledge of performing IFFT correctly. 

 

Fourier Transform Pair 
First off, let’s look at the nature of Fourier transform pair. Figure 1 (e) depicts 16-point time 

domain signals including DC and three different frequency AC signals. Figure 1 (a) is DC 1V. (b) 
is 3-cycle cosine waveform. (c) is 5-cycle sine waveform. (d) is 7-cycle composite cosine and 
sine waveform. The waveform (d) can be described as an equation as follows; 
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It contains cosine and sine waveforms with equal amplitudes. Finally the waveform (e) is the 

summation of (a), (b), (c) and (d) so that it is the multi-tone signal created by the source code 
in List 1. The waveform (e) is a real number data array. 

 

 
Figure 1: Time Domain Waveform (Multi-tone) 

 
 1:   INT              i,M,N; 
 2:   DOUBLE          dP; 
 3:   ARRAY_D         dWave; 
 4:    
 5:   N=16;                           // Number of points 
 6:   dWave.resize(N); 
 7:   for (i=0;i<N;i++) dWave[i]=1.0;  // DC 
 8:   M=3; 
 9:   dP=2.0*M_PI*M/N;         // + (3-cycle cosine) 
10:   for (i=0;i<N;i++) dWave[i]=dWave[i]+cos(dP*i); 

Okawara, Inverse FFT  2 
Rev. May-09 



11:   M=5; 
12:   dP=2.0*M_PI*M/N;         // + (5-cycle sine) 
13:   for (i=0;i<N;i++) dWave[i]=dWave[i]+sin(dP*i); 
14:   M=7; 
15:   dP=2.0*M_PI*M/N;         // + (7-cycle cosine & sine) 
16:   for (i=0;i<N;i++) dWave[i]=dWave[i]+cos(dP*i+M_PI/4); 
17:    

List 1: Waveform Generation (Real Number Array) 
 
Let’s see how a cosine signal is displayed in the frequency domain and how a sine signal is 

displayed in the frequency domain. A cosine signal may be noted as an even function, and a sine 
signal may be noted as an odd function. We know imaginary numbers in mathematics. But the 
measured waveform is always real number data. In our daily measurement jobs, test signals are 
captured as real numbers. Let’s perform FFT to the real number data array (e) to see the 
frequency spectrum. The code is as follows. 

 
18:   INT              Nsp; 
19:   ARRAY_D         dSp; 
20:   ARRAY_COMPLEX  CSp1; 
21:    
22:   DSP_FFT(dWave,CSp1,RECT); 
23:   Nsp=CSp1.size(); 
24:    

List 2: FFT of Real Input Data Array 
 

 
Figure 2: Frequency Domain Spectrum (Half Page Spectrum) 

 
FFT performs at Line 22 in List 2. The input waveform is a real data array “dWave.” The API 

at Line 22 derives a complex number array “CSp1” displaying in Figure 2. The number of 
spectrum Nsp is N/2 so that the frequency element index is settled from 0 to 7 here. At Fre-
quency 0, you can see the spectrum (1.0 + j▪0.0), which shows DC 1V. You can see the 
spectrum (1.0 + j▪0.0) at Frequency 3, the spectrum (0.0 – j▪1.0) at Frequency 5, and the 
spectrum (0.707 + j▪ 0.707) at Frequency 7. In this operation, you should understand as fol-
lows. 

DC is the real part at Frequency 0.  The imaginary part is 0. 
“cosine” signal appears in the real part. The imaginary part is 0. 
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“sine” signal appears in the imaginary part. The real part is 0. 
The spectrum at Frequency 7 is consistent of the rules 2 and 3. Frequency 7 is the combi-

nation of cosine and sine so that the cosine component gives (0.707 + j▪0.0) and the sine 
component gives (0.0 –j▪(-0.707)). Consequently the summation of the two complex numbers 
becomes (0.707 +j▪0.707), which is true at Frequency 7 in Figure 2. 

In general the FFT is designed to deal with complex input data and complex output data. Now 
let’s see how the FFT performs with complex number input waveform array “CWave”. The real 
number waveform data is expressed as complex numbers formally. The difference is the type of 
the variable. The real number waveform “dWave” fills in the real component of “CWave”, and the 
imaginary component of “CWave” is filled up with zero perfunctory. The processing is listed as 
follows. 

 
25:   ARRAY_COMPLEX CWave,CSp2; 
26: 
27:   CWave.resize(N); 
28:   for (i=0;i<N;i++) { 
29:      CWave[i].real()=dWave[i]; // Real number waveform 
30:      CWave[i].imag()=0.0;       // Imaginary data is zero. 
31:   } 
32: 
33:   DSP_FFT(CWave,CSp2,RECT); 
34:    

List 3: FFT with Complex Input Array (Zero Imaginary) 
 
In Lines 27 to 31, the real number waveform data is copied into the real part of the complex 

number array, and the imaginary part is filled up with zero. FFT performs at Line 33. Now both 
input waveform and the output spectrum are expressed with complex numbers. It is mathe-
matically elegant. Figure 3 shows the FFT result. 

 

 
Figure 3:   Frequency Domain Spectrum (Full Pages Spectrum) 

 
The size of CSp2[] is double of the size of CSp1[], and equal to the number of input waveform 

elements N. The DC is still (1+j▪0); however, AC signal lengths are slashed half. In exchange for 
it, the left half plane of the real part looks line-symmetrically copied to the right half plane, while 
the left half plane of the imaginary part looks point-symmetrically copied to the right half plane. 
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In other words, the right half plane is complex-conjugate-symmetrical to the left half plane. The 
reason that each length of the vectors is halved is based on the equation as follows. 

 

( )

( )θθ

θθ

θ

θ

jj

jj

ee
j

ee

−

−

−=

+=

2
1sin

2
1cos

.............................................................................(2) 

 
ejθ and e-jθcorrespond to the left and right planes in Figure 3. 
Let’s summarize the relationship between the input waveform and the output spectrum. See 

Figure 4. 
 

 
Figure 4: Time Domain vs. Frequency Domain 

 
Real number waveform makes complex conjugate spectrum. This is the point. 
 

Discrete IDFT 
For the input complex data series {xi}, the k-th element of the discrete Fourier transform Gk 

is expressed as follows; 
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where N is the number of data points, and k=0, 1, 2, …, N-1. Waveform data can be con-

verted into frequency spectrum data with Equation (3).  
The inverse DFT is defined as very close to Equation (3) as follows; 
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where i=0, 1, 2, …, N-1. The difference is the sign of the imaginary part and the scaling factor 

1/N. Equations (3) and (4) may be called discrete Fourier transform pair, which should be ap-
plied to complex input data and complex output data. 

 

IDFT Program Code 
According to Equation (4), you can create your own IDFT program as follows. 
 
A01: //////////////////////////////////////////////////// 
A02:  COMPLEX  Cmult(COMPLEX  CX, COMPLEX  CY) 
A03:  {                     // Complex Numbers Multiplication 
A04:      COMPLEX  CZ; 
A05:      CZ.real()=CX.real()*CY.real()-CX.imag()*CY.imag(); 
A06:      CZ.imag()=CX.real()*CY.imag()+CX.imag()*CY.real(); 
A07:      return (CZ); 
A08:  } 
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A09:  //////////////////////////////////////////////////// 
A10:  void IDFT( 
A11:      ARRAY_COMPLEX & CSp,    //  Input Spectrum Array 
A12:      ARRAY_COMPLEX & CWave   // Output Waveform Array 
A13:  ) 
A14:  {   
A15:      INT      i,j,Ndata; 
A16:      DOUBLE  dQ,dAi,dBi,dP; 
A17:      COMPLEX CX,CY; 
A18:       
A19:      Ndata=CSp.size(); 
A20:      CWave.resize(Ndata); 
A21:      dP=2.0*M_PI/Ndata; 
A22:      for (i=0;i<Ndata;i++) { 
A23:         dAi=0.0; 
A24:         dBi=0.0; 
A25:         for (j=0;j<Ndata;j++) { 
A26:            dQ=(DOUBLE)i*(DOUBLE)j*dP; 
A27:            CX.real()=cos(dQ); 
A28:            CX.imag()=sin(dQ); 
A29:            CY=Cmult(CSp[j],CX); 
A30:            dAi=dAi+CY.real(); 
A31:            dBi=dBi+CY.imag(); 
A32:         } 
A33:         CWave[i].real()=dAi; 
A34:         CWave[i].imag()=dBi; 
A35:      } 
A36:  } 
A37: 

List 4: IDFT Program Code  
 
In List 4, the input spectrum is supposed to be full-page array as Figure 3. The size of the 

spectrum array is equal to the size of the waveform array. The V93000 SOC tester provides an 
API for IFFT routine as follows. 

 
DSP_IFFT(CSpectrum, CWaveform); 
 
The point of this API is exactly the same as the IDFT routine. The input spectrum array and 

the output waveform array are complex numbers. They are the same size arrays. 
 

Guide to Successful IFFT 
As discussed previously, the waveform data is real number data. So when generating a 

waveform with applying IFFT, the result must be real number waveform and zero imaginary 
part. As Figure 4 shows, the relationship between time domain waveform and frequency domain 
spectrum is reversible with Fourier transform pair so that, in order to generate any real number 
waveform, the frequency domain data must be complex conjugate. Therefore you should design 
your frequency spectrum as complex conjugate. In other words, the real part of the frequency 
spectrum must be designed line-symmetrically and the imaginary part of the frequency spec-
trum must be designed point-symmetrically. This is the key to successfully generate a waveform 
by IFFT. So when using IFFT, you should always keep in mind the key word “complex conjugate” 
in the spectrum. 
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Figure 5: Complex Conjugate 

 
Let’s reconstruct the original waveform in Figure 3 from the spectrum calculated in the line 33 

in List 3. The spectrum is designated as CSp2[] in List 3, and it is already complex conjugate 
there. So it is simple. 

 
35:   ARRAY_COMPLEX   CWave2; 
36:   ARRAY_D          dWave2; 
37: 
38:   DSP_IFFT(CSp2,CWave2);          // IFFT 
39:   dWave2.resize(CWave2.size());  // Waveform container 
40:   dWave2=CWave2.getReal();        // Take the Real Part  
41: 

List 5: IFFT Coding with CSp2[]   (1) 
 
When using CSp1[] in Figure 2 as the input spectrum, it is half page spectrum so that you 

should take care of the size, scaling and complex conjugate in the right half page. See List 6. 
 
42:   ARRAY_COMPLEX   CSp0,CWave1; 
43:   ARRAY_D          dWave1; 
44: 
45:   Nsp=CSp1.size();             // Half page spectrum size 
46:   CSp0.resize(2*Nsp);          // Size doubled 
47:        CSp0[0].real()=CSp1[0].real();   // DC 
48:        CSp0[0].imag()=0.0; 
49:   for (i=1;i<Nsp;i++) { 
50:        CSp0[i].real()=0.5*CSp1[i].real(); // Slash half 
51:        CSp0[i].imag()=0.5*CSp1[i].imag(); // Slash half 
52:        CSp0[N-i].real()=  CSp0[i].real(); // Complex- 
53:        CSp0[N-i].imag()= -CSp0[i].imag(); // Conjugate 
54:   } 
55:        CSp0[Nsp].real()=0.0; 
56:        CSp0[Nsp].imag()=0.0; 
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57: 
58:   DSP_IFFT(CSp0,CWave1);          // IFFT 
59:   dWave1.resize(CWave1.size()); //  Waveform container 
60:   dWave1=CWave1.getReal();       //  Take the real part 
61: 

List 6: IFFT Coding with CSp1[]   (2) 
 
In short, for successful IFFT or IDFT, if you have a front page spectrum as Figure 2, you need 

to create the back page from the front page adjusting the magnitude as Figure 3. Then you can 
get real waveform data and zero imaginary waveform. At the end, take the real part only for real 
waveform. 

 

Cases that IFFT Is Needed  
When you would like to modify or manipulate a waveform, it is an opportunity for IFFT to be 

called. For example, the following situations would need the help of IFFT. 
 

• Filtering in Frequency Domain  
• FIR(Finite Impulse Response) Generation from Frequency Response 
• Refining Fundamental Signal with Selecting Frequency Spectrum 
• Waveform Interpolation by Zero Insertion 
• S/N Calculation in Time Domain 
• Differentiation of Waveform in Frequency Domain Operation 
• Multi-tone Generation by Frequency Domain (High-speed) 
• AM Modulated Waveform Generation by Frequency Domain 

 
IFFT-employed practical applications will be discussed in the future newsletter articles. 
 

Appendix: Playing IFFT with using FFT Routine 
As seen in Equation (3) and (4), the IDFT procedure is quite similar to the DFT procedure. The 

difference is only the sign of sine term and scaling that is not a big issue. Just in case you have 
no appropriate IFFT API available for some reason, you could utilize the FFT routine for per-
forming IFFT. This is a kind of workaround. All you have to do is to reverse the order of the input 
spectrum array. Let’s take the full-page spectrum of CSp2[] in List 3. The procedure is as fol-
lows. 

 
62:  ARRAY_COMPLEX  CSp3,CWave3; 
63:  ARRAY_D         dWave3; 
64: 
65:  CSp3.resize(N);  // Full-page complex conjugate spectrum 
66:  CSp3[0]=CSp2[0];                 // Copy the DC only. 
67:  for (i=1;i<N;i++) {             //  Reverse order 
68:     CSp3[i].real()=CSp2[Ndata-i].real(); 
69:     CSp3[i].imag()=CSp2[Ndata-i].imag(); 
70:  } 
71:  DSP_FFT(CSp3,CWave3,RECT);     // FFT instead of IFFT 
72:  dWave3.resize(N);               // Waveform container 
73:  dWave3=CWave3.getReal();       // Take the real part 
74:  DSP_MUL_SCL((DOUBLE)N,dWave3,dWave3);    // Scaling 
75: 

List 7: Playing IFFT with FFT API 
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