Hideo Okawara's Mixed Signal Lecture Series

DSP-Based Testing - Fundamentals 35 F-matrix Simulation

Verigy J apan
April 2011

Preface to the Series

ADC and DAC are the most typical mixed signal devices. In mixed signal testing, analog stimulus signal is generated by an arbitrary waveform generator (AWG) which employs a D/A converter inside, and analog signal is measured by a digitizer or a sampler which employs an A/D converter inside. The stimulus signal is created with a mathematical method, and the measured signal is processed with a mathematical method, extracting various parameters. It is based on digital signal processing (DSP) so that our test methodologies are often called DSP-based testing.

Test/application engineers in the mixed signal field should have thorough knowledge about DSP-based testing. FFT (Fast Fourier Transform) is the most powerful tool here. This corner will deliver a series of fundamental knowledge of DSP-based testing, especially FFT and its related topics. It will help test/application engineers comprehend what the DSP-based testing is and assorted techniques.

Editor's Note

For other articles in this series, please visit the Verigy website at www.verigy.com/go/gosemi.

Preface

When you design a DUT board, you may want to analyze the characteristics and performance of transmission lines, switches, filters or their combination circuits. If you had simulation tools such as Spice or MATLAB available in your environment, you could use them for analysis. However, even if you have nothing like those tools, you could do considerable analysis utilizing our SmarTest environment. You might have learned about F-matrix in the lectures of electric circuit theory in your school days. It is very traditional and conventional theory. Many of you may have forgotten it. However, we could utilize it for our simple circuit simulations using our SmarTest APIs and arithmetic instructions. This scheme could be embedded in our application if necessary. From this month, we will discuss the F-matrix applications. Let's begin with the basics of the F-matrix.

F-matrix

Figure 1 illustrates a four-terminal network or two-port network of an electric circuit, which is linear time-invariant and does not contain any source inside. The input voltage V_{1} and current I_{1} can be related to the output voltage V_{2} and current I_{2} with the $A B C D$ parameters ${ }^{1}$ in the F -matrix as illustrated. The F-matrix stands for four-terminal matrix. The input/output voltages, currents and $A B C D$ parameters are all complex numbers in this article and the simulation program.

Figure 1: F-matrix

```
struct Fmatrix {
    COMPLEX a;
    COMPLEX b;
    COMPLEX c;
    COMPLEX d;
    Fmatrix operator*(Fmatrix &);
};
```

List 1: F-matrix Definition

First of all, you have to define the F-matrix type. Since an F-matrix contains complex number ABCD parameters, it is realized as the traditional struct definition as List 1 which contains the operator entry for the specific multiplication of F-matrices as well. This operator entry allows you to write F-matrices multiplication very easy with using the mark "*" as regular arithmetic. Now you can declare F -matrix variables and refer ABCD components as List 2 shows.

When the output port of the network is open, the output current I_{2} is zero so that the VI equations can be simplified as Figure 2 illustrates. Consequently the voltage gain of the network V_{2} / V_{1} and the input impedance V_{1} / I_{1} can be described as $1 / A$ and A / C respectively. These calculations can be programmed as List 2 shows. Since the components in Fx are complex numbers, the four basic operations of arithmetic (+-*/) are performed in the complex number mode in our C++ environment.

[^0]

Figure 2: Output Open ($I_{2}=0$)

Fmatrix	Fx;		
COMPLEX	One(1.0,0.0);	$/ /$	$1+\mathrm{j} 0$
COMPLEX	Zero(0.0,0.0);	$/ /$	$0+\mathrm{j} 0$
COMPLEX	Gain=One/Fx.a;	$/ /$	$1 / \mathrm{A}$
COMPLEX	Zin=Fx.a/Fx.C;	//	A/C

List 2: Complex Number Arithmetic

Cascaded Networks

When two networks are cascaded, they can be combined into a single network who's F-matrix can be calculated by multiplying the two F-matrices F_{1} and F_{2} together as Figure 3 illustrates:

F0. $a=a^{*}$ F2. $a+b * F 2 . C$;
F0. $b=a^{*} F 2 . b+b^{*} F 2 . d$;
F0. $C=c^{*} F 2 . a+d^{*} F 2 . c$; F0. $d=c^{*} F 2 . b+d^{*} F 2 . d$;
return(F0);
\}
Figure 3: 2 Networks Connected
List 3: F-matrices Multiplication
List 3 shows the actual coding of the F -matrices' multiplication. The definitions in Lists 1 and 3 allow you to perform the multiplication of F -matrices using "* (asterisk)" as $\mathrm{F}_{0}=\mathrm{F}_{1} * \mathrm{~F}_{2}$.

When there are three networks cascaded as Figure 4, you can combine the networks F_{2} and F_{3} into F_{4} and then combine the networks F_{1} and F_{4} into F_{0}. Since the F-matrices multiplication is already defined in List 3, the coding of 3 networks concatenation is simply performed as List 4 illustrates.

Figure 4: 3 Networks Connected

```
Fmatrix F0,F1,F2,F3;
Fmatrix F4;
F4=F2*F3;
F0=F1*F4;
```

List 4: F-matrices Connected

This is the way you can combine more than 3 networks cascaded into a single network by multiplying two F-matrices step by step.

Network Components

Figure 5 illustrates an impedance Z and an admittance Y. The impedance Z can be described as a complex number $\mathrm{R}+\mathrm{j} \cdot \mathrm{X}$ which means a series connection of a resistance R and a reactance X , where " j " is the imaginary unit. The reactance X can be interpreted as $\omega \mathrm{L}$, where " ω " is $2 \cdot \pi \cdot$ frequency and L is an inductance. The admittance Y can be described as a complex number $G+j \cdot B$ that means a parallel connection of a conductance G and a susceptance B. The susceptance B can be interpreted as ωC, where C is a capacitance. The impedance and admittance are complex numbers so that they can be coded as List 5 illustrates.

Figure 5: I mpedance and Admittance

```
DOULBE w,Freq;
DOUBLE R,X,L;
DOUBLE G,B,C;
W=2.0*M_PI*Freq; // 2*pi*frequency
COMPLEX Z1(R,W*L); // R+j*WL
COMPLEX Z2(R,X); // R+j*X
COMPLEX Y1(G,W*C); // G+j*WC
COMPLEX Y2(G,B); // G+j*B
```


List 5: Z, Y Definition

Using the impedance Z and admittance Y, assorted F-matrices can be defined as Figures 6 to 9 illustrate, and their corresponding F-matrices are listed in Lists 6 to 9 respectively. Figure 9 and List 9 describe the transmission line. If the R, G, L and C parameters per unit length are given, the transmission line model can be expressed by the F-matrix "Fxline()."

Figure 6: 1 Component F-matrices

Figure 7: 2 Components F-matrices

Fmatrix Fz (COMPLEX Z	Fmatrix Fy(COMPLEX Y
))
\{	\{
Fmatrix H;	Fmatrix H;
H.a=0ne;	H.a=One;
H.b=z;	H.b=Zero;
H.c=Zero;	H. C=Y;
H. d=One;	H. d=One;
\}	\}

List 6: Fz, Fy Routines

Fmatrix FZy (Fmatrix Fyz (
COMPLEX Z,	COMPLEX Y, COMPLEX Y COMPLEX Z
\{	\{
Fmatrix H;	Fmatrix H;
H.a=One+Z*Y;	H.a=One;
H.b=Z;	H.b=Z;
H.C=Y;	H.C=Y;
H.d=One;	H.d=One+Y*Z;
return (H);	return $(H) ;$
\}	

List7: Fzy, Fyz Routines

Figure 8: 3 Components F-matrices List 8: Fzyz, Fyzy Routines

Figure 9: Transmission Line F-matrix

```
Fmatrix Fxline(
    DOUBLE R,DOUBLE G,
    DOUBLE L,DOUBLE C,
    DOUBLE Length,
    DOUBLE Frequency
)
{
    COMPLEX Zo, cosh_,sinh_;
    Fmatrix H;
    Xline(R,G,L,C,
        Length, Frequency,
        &Zo,&cosh_,&sinh_);
    H.a=cosh_;
    H.b=Zo*sinh_;
    H.C=sinh_/Zo;
    H.d=cosh_;
    return(H);
}
```

```
void Xline(
```

void Xline(
DOUBLE R,DOUBLE G,DOUBLE L,DOUBLE C,
DOUBLE R,DOUBLE G,DOUBLE L,DOUBLE C,
DOUBLE Length,DOUBLE Freq,
DOUBLE Length,DOUBLE Freq,
COMPLEX *Zo,COMPLEX *Coh,COMPLEX *Sih
COMPLEX *Zo,COMPLEX *Coh,COMPLEX *Sih
)
)
{
{
DOUBLE W,a1,b1,u,v;
DOUBLE W,a1,b1,u,v;
COMPLEX Z,Y,zo,zy,cosh_,sinh_;
COMPLEX Z,Y,zo,zy,cosh_,sinh_;
W=2.0*M_PI*Freq;
W=2.0*M_PI*Freq;
Z=COMPLEX(R,W*L);
Z=COMPLEX(R,W*L);
Y=COMPLEX(G,W*}C)
Y=COMPLEX(G,W*}C)
zo=Csqrt(Z/Y);
zo=Csqrt(Z/Y);
zy=Csqrt(Z*Y);
zy=Csqrt(Z*Y);
a1=zy.rea1()*Length;
a1=zy.rea1()*Length;
bl=zy.imag()*Length;
bl=zy.imag()*Length;
u=0.5*(\operatorname{exp}(a1)+exp(-a1));
u=0.5*(\operatorname{exp}(a1)+exp(-a1));
v=0.5*(exp (a1)-exp (-a1));
v=0.5*(exp (a1)-exp (-a1));
cosh_.rea1()=u*}\operatorname{cos(b1);
cosh_.rea1()=u*}\operatorname{cos(b1);
cosh_.imag()=\mp@subsup{v}{}{*}}\operatorname{sin}(b1)
cosh_.imag()=\mp@subsup{v}{}{*}}\operatorname{sin}(b1)
sinh_.rea1()=\mp@subsup{v}{}{*}}\operatorname{cos}(\textrm{b}1)
sinh_.rea1()=\mp@subsup{v}{}{*}}\operatorname{cos}(\textrm{b}1)
sinh_.imag()=u*sin(b1);
sinh_.imag()=u*sin(b1);
*Zo=zo;
*Zo=zo;
*Coh=cosh_;
*Coh=cosh_;
*sih=sinh_;
*sih=sinh_;
return;
return;
}

```
}
```


List 9: Fxline Routines

If you have a more complex network, you can divide it into several sub-networks illustrated in Figures 6 to 9 . Then the big network is expressed as concatenated sub-networks. You can combine each sub-network's F-matrix step-by-step using the multiplication method described in Figures 3 and 4. Finally the original complex network can be dealt as a single F-matrix.

Exercise

Let's do an exercise with the network depicted in Figure 10.

Figure 10: An Original Network
This circuit model can be decomposed as Figures 11 and 12 show. In Figure 11 it is separated into 4 sections and in Figure 12 it is separated into 3 sections. Either model would be fine. The coding is listed in List 10 and 11 respectively. Generally speaking, the fewer sections there are, the shorter the calculation time is.

Figure 11: F-matrices Decomposition

```
Fmatrix F0,F1,F2,F3;
Fmatrix F4,F5,F6;
F5=F3*F4;
F6=F2*F5;
F0=F1*F6;
```

List 10: F-matrices Multiplication

Figure 12: F-matrices Decomposition

```
Fmatrix F0,F1,F2,F3;
Fmatrix F4,F5,F6;
F4=F2*F3;
F0=F1*F4;
```

List 11: F-matrices Multiplication

List 12 shows the images of the gain $\mathrm{V}_{2} / \mathrm{V}_{1}$ calculation. The network in Figure 11 is used. Each RLC component values should be defined before going into the for-loop from 43 to 58 . Line 57 calculates the gain of the network by the combined F-matrix component.

10 :
11: INT i;
12: INT $N=1024$; // \# of Data
13: INT Nsp=N/2; // \# of spectra
14: DOUBLE dFs=500.0 MHz; // Sampling Frequency
15: DOUBLE dFresln=dFs/N; // Frequency Resolution
16: DOUBLE W;
17: DOUBLE dFreq
18: ARRAY_D Gain, Phase; // Gain Phase Arrays
19: COMPLEX One (1.0,0.0); // Constant 1+j0
20: ARRAY_COMPLEX CGain; // Gain Array (Rect. Coordinate)
21: Fmatrix F0,F1,F2,F3,F4,F5,F6; // Fmatrices
22:
23: DOUBLE R0,R1,R2,R3,R4; // Resistance Components
24: DOUBLE LO,L1,L2,L3,L4; // Inductance Components
25: DOUBLE C1,C2,C3,C4; // Capacitance Components
26:
27:
40:
41: CGain.resize(Nsp); // Gain Container (COMPLEX)
42:
43: for ($i=0 ; i<N s p ; i++$) \{
44 :
45: dFreq=dFres7n*i;
46: $W=2.0 * M _P I * d F r e q$;
47:
48: $\quad \mathrm{F} 1=\mathrm{Fz}\left(\operatorname{COMPLEX}\left(\mathrm{R} 0, w^{*} \mathrm{~L} 0\right)\right)$;
49: $\quad \mathrm{F} 2=\mathrm{Fzyz}\left(\operatorname{COMPLEX}\left(R 1, w^{*} \mathrm{~L} 1\right), \operatorname{COMPLEX}\left(G 1, w^{*} \mathrm{C} 1\right), \operatorname{COMPLEX}\left(R 2, w^{*} L 2\right)\right.$);

51: $\mathrm{F} 4=\mathrm{Fzy}\left(\operatorname{COMPLEX}\left(\mathrm{R} 4, w^{*} L 4\right), \operatorname{COMPLEX}\left(\mathrm{G} 4, w^{*} \mathrm{C} 4\right)\right.$);
52:
53: F5=F3*F4; // F-matrices Multiplication
54: F6=F2*F5; // F-matrices Multiplication
55: F0=F1*F6; // F-matrices Multiplication
56 :
57:
CGain[i]=One/F0.a; // 1/A
58: \}
59:
60: DSP_RECT_POL(CGain,Gain, Phase); // Rectangular to Polar Conv.
61:
62: for (i=0;i<Nsp;i++) Gain[i]=20.0*1og10(Gain[i]); // [dB] Gain 63 :

List 12: Program Example

In this article, the scheme of F-matrix application is explained. More specific examples will be introduced in future articles.

[^0]: ${ }^{1}$ Alias: Transmission Parameters

